Katarina Kovač (ETH Zürich) Evolving Galaxies in Evolving Environments **Concluding remarks**

The Environmental Revolution

Key ingredients governing `environmental revolution'

- Morphology density relation $(T \Sigma)$
- Rising blue fraction $f_B(z)$

Slide from Richard Ellis' talk at "Galaxy Evolution and Environment" Malaysia 2009

The Environmental Evolution

- Galaxies in dense environments are more massive, redder, show less SF; also older and more concentrated than galaxies in less dense environments; established over 0 < z< 1,1.5 in a range of galaxy environments (e.g. Dressler 1980, Kauffmann et al. 2004, Cucciati et al. 2010, Kovač et al. 2010,2014, Quadri et al. 2012)
- Emerging picture: galaxies are getting transformed from blue, SF (and late) to red,non-SF (and early)
- Evolution mainly driven by mass

Environment is equivalent to > 2 Gyr retardation

A delay in physical processes or an indication of two different processes?

Bolzonella, Kovač + zCOSMOS 2010

What is environment? (Gray, Mamon)

- 1. Continuous environments = = galaxy counts
- 2. Groups/clusters = = virialised (bound) structures
 - not so simple in practice

Gray:

please be specific when you talk about environment!

- tell us how you measured it, and remember that 'high density' isn't really meaningful
- different measures will be appropriate to probe different physical regimes

Are our environment measures too simplistic?

env class: void, filament, sheet, cluster

"Tentative statement: at fixed group/halo mass ... no dependence of the stellar assembly time on geometric/global environment"

Moving to z>1.5,2

<- Number counts (zCOSMOS)

K.-G. Lee: Ly α Forest as a Probe of the Cosmic Web

Note: Negative δ_{F} corresponds to higher densities

Orsi, Lemaux, Koyama, Gray: Tracing protoclosters

- Lyα blobs
- Radio galaxies
- Quasars

$M\star$, SFR, ΔMS distribution

SFR

⁽Koyama et al. 2013b)

SFR vs environment

(s)SFR of star-forming galaxies do not dependent on environment (Peng et al.

Kauffmann et al. 2004

Steele: Holds also for all "emission class" objects in GAMA

Peng, Lilly, Kovač et al. 2010

Cluster vs. Field comparison out to z~2

The MS location is always independent of environment since z~2!

Clusters: SSFR depends on environment

Mass and environment in the galaxy evolution

Red fraction of galaxies depends both on stellar mass and environment (also ChangHoon Hahn PRIMUS results):

f_red (ρ,m)=1 – exp[(-((ρ/p1)^p2) – ((m/p3)^p4)] (Baldry et al. 2006, Peng et al. 2010)
=
$$\varepsilon_m(M_*) + \varepsilon_\rho(\delta) - \varepsilon_m(M_*)\varepsilon_\rho(\delta)$$

Separability holds to a good degree at least up to z<0.7; possible cross-term within the errors

Mass and environmental quenching over time

Dominant mechanism for the quenching of galaxies changes with time

Importance of the environmental quenching increases with cosmic time and with decreasing stellar mass – qualitatively consistent with the growth in the LSS and infall of (lower mass) satellites to the larger structures producing the observed environmental effects Lucrative idea from the theory: many physical processes suggested

Satellite quenching efficiency (z=0)

$$\varepsilon_{sat}$$
 (m) = [f_{r,sat}(m) - f_{r,cen}(m)]/[f_{b,cen}(m)]

 $\varepsilon_{sat}(m,\rho) = [f_{r,sat}(m,\rho) - f_{r,cen}(m,\rho)]/[f_{b,cen}(m,\rho)]$

At z~0 and log(M*/Msol)<11: 1) red fraction of centrals does not show strong dependence on environment

2) satellite quenching constant with mass and responsible for most of the observed environmental quenching

Satellites are the major drivers of the overall observed environmental effects up to (at least) 0.7

Knobel, Lilly, KK+ et al. 2013

Kovač et al. 2014

Quiescent galaxy fractions

Hirschmann

Stellar mass

overall density dependence mainly driven by satellites (Kovac et al., 2013) similar behavior of centrals & satellites & strong density dependence

Models: centrals & satellites behave differently & weaker density dependence \Rightarrow Over-estimating *quiescent* \Rightarrow Under-estimating quiescent centrals

satellites (e.g. Kimm+09)

5

Satellites are the major drivers of the overall observed environmental effects ... but ... some centrals are the same as satellites

Hirschmann

Backsplash population

Hirschmann

Stellar mass

True centrals: No dependence on density

◆ Backsplash centrals: Responsible for over-all density dependence ⇒ environment mainly relevant for low mass centrals at high densities

Spend on average 1.5-3 Gyrs at z=0.5-2 as a satellite (depending on density & mass)

Satellites are the major drivers of the overall observed environmental effects ... but ... some centrals are the same as satellites

Quenched fraction of centrals in the "large" groups same as the quenched fraction of satellites when matched in the stellar mass and environment

Knobel, Lilly, Woo, Kovač 2014

Satellites are the major drivers of the overall observed environmental effects ... but ... properties of satellites depend on properties of their central

Satellites are the major drivers of the overall observed environmental effects ... but ... properties of satellites depend on properties of their central

Satellites of the quenched centrals have a larger probability to be quenched than the satellites of the star-forming centrals (conformity)

Assembly bias and conformity

Correlation with the formation time (in this case C) can explain the observed conformity signal

Paranjape+ Hartley, Kovač in prep)

Do we need satellite-specific quenching at all?

SFR of a galaxy is determined by its dark matter halo formation history

Satellites (at a given mass) are redder because their subhaloes form earlier than host haloes

Watson et al. 2014

Hearin et al. 2014

R[Mpc/h]

"JELLYFISH" GALAXIES IN OMEGAWINGS

Poggianti

In prep.

COMPARING WITH A SIMPLE RAM PRESSURE MODEL

Poggianti (also Cybulski)

a simple model following Gunn & Gott prescription, a beta cluster model and galaxy parameters for the Milky Way

Dashed grey line: to the left of which MW-like galaxies are expected to be completely stripped of HI gas

Solid green where galaxies are stripped enough to fall below our HI detection limit

These are effects on first infall galaxies

"Virialized region roughly at r<R200 and Av<1.5sigma, where many of the galaxies have passed pericenter more than once, thus have been in the cluster for > 2 Gyr

Stripping in action?

Central galaxies

Quenching: a stronger function of central stellar mass **density** (bulge) rather than stellar mass

Omand+ 2014

Tremonti

Central galaxies

Quenching: a stronger function of central stellar mass **density** (bulge) rather than stellar mass

Omand+ 2014

Bluck et al. 2014

AGN and environment

- Best: Radiative mode can keep the quenched galaxies quenched
- Sabater: (at fixed mass) decrease of optical AGN fraction and increase of the fraction of radio AGN in denser environments
- both enhanced by (one-on-one) galaxy interactions (Patton)
- with central star formation matched: only indirect effect of environment

Activity level

Central galaxies

Central ETGs low M 10 Age [Gyr] 12.8 ø (a) "highinnM 9 0.1 C2 [H/Z] 0 -0.1 (b) 0.3 $[\alpha/Fe]$ 0.2 (c) 0.2 (d) ₹ 1.0 150 200 300 100 250 $\sigma [km/s]$ La Barbera

Centrals in "groups", i.e. with "high"- M_h (sample C2), have younger ages, higher [Z/H], lower [α /Fe], and higher A_v than those with low M_h (sample C1).

"ETGs in C2 underwent gas-rich interactions more than those in C1"

BCGs as special centrals Yen-Ting Lin

central location controls how they feed

Ling: little stellar mass growth in real BCGs since z<0.5

Fraser-McKelvie: (WISE) SF in BCGs is rare

Zhao: cDs tend to be more massive and reside in higher densities than elliptical BCGs: cDs build-up through minor mergers?

central location controls how they feed

What about mergers?

Saintonge:

The old picture: merger-driven galaxy evolution

from mid-80s to 5-10 years ago: merging of galaxies seen as the main driver of galaxy evolution

What about mergers?

Saintonge: The global picture: accretion-driven galaxy evolution

Forster Schreiber et al. (2006)

near-IR IFU work: $z{\sim}2$ galaxies with high SFRs are in large part well ordered discs, and not major mergers.

What about mergers?

Specific rate of formation through major mergers

Guo&White 2008

Discussion

- Importance of mergers/interactions
- Structure/morphological transformation w.r. to mass and environmental quenching
- Quenching timescales
- Growth of structure
- Overall quenching?

THANKS to the Organizers... ...and have a safe journey home!

