

Galaxy merger fractions at z=0-3: Resolving the discrepancy in observations

Allison Man

Uni. Copenhagen, Denmark + Sune Toft, Andrew Zirm ApJ submitted

Bologna, 19th September 2014

Why do we care about galaxy mergers?

Mergers can...

- Transform galaxy morphologies
 - Disk → spheroids, bulge formation
 (Toomre & Toomre 72; Barnes & Hernquist 96; Hopkins+10)
 - If gas poor: Puff up galaxies (Khochfar & Silk 06; Bezanson+09; Naab+09, +12; Nipoti+09; Hilz+12,+13)
- Trigger activity in galaxies if gas-rich
 - Enhance star formation / starbursts
 (de Propris+05; Engel+10; Kartaltepe+10; Patton+11, +13)
 - Trigger black hole accretion (AGN) (Treister+12; Ellison+13)

• Accrete stellar mass

(Bundy+04; Oser+10; Ferreras+13)

Milky Way-like gas poor merger simulation from <u>Philip Hopkins</u>

Measuring galaxy merger rates

Given a galaxy catalogue (with RA, Decl, redshift, magnitude / stellar mass)

1) Identify galaxy mergers

- Morphology
- Close galaxy pairs

Zepf & Koo 89; Le Fevre+00, Patton+00, 08; Lin+04, 08; de Propris+05, Kartaltepe+07; Ryan+08; Bluck+09; Bundy+09; de Ravel +09; Robaina+10; Williams+11; Xu+12; Lopez-Sanjuan+11, +12, +13; Man+12, +14; Newman+12; Xu+12; Tasca+14 and more

Measuring galaxy merger rates

Given a galaxy catalogue (with RA, Decl, redshift, magnitude / stellar mass)

Measuring galaxy merger rates

Given a galaxy catalogue (with RA, Decl, redshift, magnitude / stellar mass)

1) Identify galaxy mergers

- Galaxy pairs with projected separation of 10-30kpc/h, matching redshifts
- Major merger : Mass ratio 1:1 1:4
- Minor merger : Mass ratio 1:4 1:10

2) Calculate merger fraction (X % of galaxies are merging)

3) Convert merger fraction to rate using timescale

- Merger observability timescale, e.g. 0.4 1 Gyr for 10-30 kpc/h pairs (Lotz+10)
- Merger rate = N mergers / galaxy / unit time

Zepf & Koo 89; Le Fevre+00, Patton+00, 08; Lin+04, 08; de Propris+05, Kartaltepe+07; Ryan+08; Bluck+09; Bundy+09; de Ravel +09; Robaina+10; Williams+11; Xu+12; Lopez-Sanjuan+11, +12, +13; Man+12, +14; Newman+12; Xu+12; Tasca+14 and more

Consistent merger rates at z < 1.5

 Lotz+11 find consistency across observations & theoretical predictions up to z=1.5 if samples are selected the same way

Major merger rate (Lotz+11) ••• Observations --- Theoretical predictions

Discrepant merger fractions at z~2

Based on different data (*HST* vs ground-based) & selection (*H*-band flux ratio vs stellar mass ratio)

• Largest sample of photometrically selected mergers at z>1

Survey	Ref	Area [deg ²]	Depth (5 σ)	FWHM
UltraVISTA / COSMOS	Muzzin+13	1.62	K=23.8	0.75"
3DHST + CANDELS	Skelton+14	0.25	H=26.9	0.18"

- ♦ Merging massive (logM≥10.8) galaxies are identified by pairs:
 - Projected separations 10-30 kpc/h
 - Photo-z's overlap within 1σ uncertainties
 - Stellar mass or H-band flux ratio
 - ▶ 1:1 1:4 (major)
 - ▶ 1:4 1:10 (minor)

Merger fractions - literature

Inferred merger rate & evolution

z=0.1-2.5	Stellar mass ratio selected	Flux ratio selected
Major merger	1	1.5
Minor merger	0.7	1

A massive galaxy doubles its stellar mass from z~2.5 to 0.1 by accreting stars via major & minor mergers

Insufficient merging to explain size evolution of quiescent galaxies

- Average sizes of quiescent galaxies increase their sizes ~3-5 times (Newman+12, and ref therein)
 - Disappearance of compact galaxies by merging

(Belli et al. 2014a; van der Wel et al. 2014; van Dokkum et al. 2014)

 Addition of larger, later quenched galaxies (Carollo+13; Poggianti+13; Krogager+14)

Assuming all mergers are dry, major + minor mergers can increase the sizes by a factor of 2 from $z\sim2.5$ to 0.

Merger-driven size evolution models based on Naab+09; Hilz+13

Conclusions

- ♦ Discrepant merger fraction at z~2:
 - ♦ Stellar mass ratio → bias against gas-rich satellites → diminishing merger fraction
 - ♦ Observed H-band flux ratio → bias towards gas-rich satellites
 → increasing merger fraction
- Which ratio to used? Depends on science questions.
- Merging is enough to explain the stellar mass assembly of the most massive galaxies at z~0-2.5, but additional mechanisms are needed to explain the rapid average size evolution of quiescent galaxies