The role of environment as traced by semi-analytic models and KMOS observations

Matteo Fossati (USM/MPE)

& D. Wilman, T. Mendel, A. Beifiori, G. De Lucia, M. Hirschmann, P. Monaco, F. Fontanot & KMOS3D team

EGEE - Bologna - 15th September 2014
Motivation

• Quantify the evolving environment of galaxies
• Tools and methods to define and characterise environment at high-z (but not only)
• General methods that can be applied to a variety of datasets.

• Results validation by means of scientifically interesting test on physical quantities in the models

M. Fossati et al. submitted
The sample and density measurements

- SAM from Guo et al. 2013 (MR7 simulation, WMAP7 initial parameters)
- Snapshots at $z = 1.08, 2.07$
- Simple stellar mass selection $M^* > 10^{9.5} \, M_{\odot}$
- Three samples to test the effects of redshift accuracy.
- Density in cylinders covering intra-halo and super-halo scales 0.25 and 1.50 Mpc
- Velocity cut $\pm 1500 \, \text{Km/s}$ (7000 km/s for Photo-z)
- Stellar mass rank in the same set of cylinders
Density - Halo mass correlation

Infalling or "backsplash" population (see M.Gray - M.Hirschmann talks and Bahe+13, Wetzel+13)
• The density simply traces the mass of the most massive halo in 1 Mpc
Centrals/Satellites identification

The primary galaxy is more massive than its neighbour \rightarrow Massrank = 1
Centrals/Satellites identification

The primary galaxy is less massive than its neighbours → Massrank = 3
We make use of the stellar mass rank in several apertures to identify central and satellite galaxies.
Centrals/Satellites identification

We make use of the stellar mass rank in several apertures to identify central and satellite galaxies.

- Adaptive aperture based on the good correlation between M^* and M_{halo} for centrals.

$$r = \min(0.75, n \times 10^{(\alpha \log M^* + \beta)}) \text{ [Mpc]}$$

α and β are the parameters describing the $M_{\text{halo}} - r_{\text{vir}}$ correlation in the models. $n = 3$ is required to avoid very small apertures.
Centrals/Satellites identification

We make use of the stellar mass rank in several apertures to identify central and satellite galaxies.

- The adaptive aperture works well also for satellites.
Centrals/Satellites identification

Effects of the redshift accuracy using the adaptive aperture.

Mass-rank = 1 vs. Centrals, $z=1.08$

Mass-rank > 1 vs. Satellites, $z=1.08$
Recovering environmental trends with observational tools

- **z = 1.08 Centrals**
 - (Graph showing a 3D plot with axes for \(\log(M_*/M_\odot) \) and \(\log(M_{\text{halo}}/M_\odot) \), with a color bar indicating Passive Fraction.

- **Centrals**
 - (Graph showing a 3D plot with axes for \(\log(M_*/M_\odot) \) and \(\log(M_{\text{halo}}/M_\odot) \), with a color bar indicating Passive Fraction.

- **z = 1.08 Satellites**
 - (Graph showing a 3D plot with axes for \(\log(M_*/M_\odot) \) and \(\log(M_{\text{halo}}/M_\odot) \), with a color bar indicating Passive Fraction.

- **Satellites**
 - (Graph showing a 3D plot with axes for \(\log(M_*/M_\odot) \) and \(\log(M_{\text{halo}}/M_\odot) \), with a color bar indicating Passive Fraction.

- **Mass–rank = 1 galaxies**
 - (Graph showing a 3D plot with axes for \(\log(M_*/M_\odot) \) and \(\log(M_{\text{halo}}/M_\odot) \), with a color bar indicating Passive Fraction.

- **Mass–rank > 1 galaxies**
 - (Graph showing a 3D plot with axes for \(\log(M_*/M_\odot) \) and \(\log(M_{\text{halo}}/M_\odot) \), with a color bar indicating Passive Fraction.

- **Backsplash galaxies?**
Recovering environmental trends with observational tools

Effects of the redshift accuracy.

- The results stand even with Photo-z accuracy, but the sample needs to be large and deep.
KUBEVIZ: a code for line fitting

Data-cube visualisation and line fitting (D.Wilman - M.Fossati)
Take-home messages

The density poorly correlates with halo mass for central galaxies. A good correlation exists for satellites.

The rank in stellar mass is an effective, and observationally motivated method to identify both centrals and satellites. An adaptive aperture allows to reach high purity and completeness.

The environmental dependence of the fraction of passive galaxies can be recovered by using the density and the mass-rank.

$H\alpha$ profiles can shed light on the environmental effects acting on galaxies at high-z.