PRIMUS: Galaxy Environment on the Quiescent Fraction at z < 0.8

ChangHoon Hahn Michael Blanton (New York University)

PRIMUS Team

Alison Coil, Daniel Eisenstein, Scott Burles, Richard Cool, John Moustakas, Guangtun Zhu

EGEE Sept 15, 2014

Properties of Galaxies

stellar mass

Noeske et al. (2007)

EGEE Sept 15, 2014

Role of Galaxy Environment

- Galaxies in high density environments are redder, more massive, and have lower star formation rates
- How do galaxies in different environments evolve over cosmic time?
 e.g. Butcher Oemler Effect (galaxies in clusters)

EGEE Sept 15, 2014

Role of Galaxy Environment

- Environmental quenching mechanisms (e.g. ram-pressure stripping, strangulation, and etc.)
- Isolating environmental effects of quenching difficult due to underlying relations among observable properties and limited statistics

•
$$f_Q(\mathcal{M}_*, z, \delta_{env})$$

Ram pressure stripping in NGC 4402 as it falls towards the Virgo Supercluster

NYU Value Added Galaxy Catalog (NYU-VAGC)

- Blanton et al. (2005)
- Derived from SDSS DR7 (Abazajian et al. 2009)
- GALEX UV imaging
- 0.01 < z < 0.2
- 169,727 galaxies over $2,505 \text{ deg}^2$

NYU-VAGC and SDSS-GALEX footprints

NYU CCPP

EGEE Sept 15, 2014

Data

PRIsm MUlti-object Survey (PRIMUS) Coil et al. (2011), Cool et al. (2013) ~120,000 spectroscopic redshift with σ_z/(1 + z) < 0.005 GALEX UV imaging ~ 5.5 deg² out of ~ 9 deg²

 SFR and stellar masses from iSEDfit (Moustakas et al. 2013)

prism exposure in a PRIMUS field

Sample Selection

Stellar mass complete
 SDSS-GALEX : mass-to-light ratio
 PRIMUS : Moustakas et al. (2013)

 $\log(SFR_{\min}) = -0.49 + 0.64 \log(\mathcal{M}_* - 10) + 1.07 (z - 0.1)$

 Star-forming / Quiescent galaxy classification using "star-forming main sequence" evolution (Moustakas et al. 2013)

SDSS-GALEX mass-to-light ratio

Sample Selection

Stellar mass completeness limits

EGEE Sept 15, 2014

Environment

- Environment Defining Population (EDP)
 - Absolute magnitude (M_r) limits
 - Equivalent number density for all redshift bin
 - Behroozi et al. 2013; Leja et al. 2013

Hahn et al. (in prep)

Environment

- Fixed Cylindrical Aperture
 - $R = 2 h^{-1} Mpc$, $H = 25 h^{-1} Mpc$
 - Halo model (Blanton et al. 2006; Wilman et al. 2010)
 - PRIMUS σ_z , Redshift Space Distortion
 - Classification :
 - Low Density Environment : n_{env} < 0.5</p>
 - High Density Environment : n_{env} > 3.0
- Edge Effects
 - Remove galaxies near the survey edge

Edges of a PRIMUS field

EGEE Sept 15, 2014

Sample Selection

After imposing edge-cuts and stellar mass completeness limits we have

	Total	n	n
0.05 < z < 0.12	~ 64,000	~1,100	~ 30,000
0.2 < z < 0.8	~13,000	~ 4,300	~ 4,300

Stellar Mass Function Evolution

High Density Environment Low Density Environment -2 (a) (b) Star-Forming -30.05 - 0.120.2 - 0.4log ($\Phi/Mpc^{-3} dex^{-1}$) 0.4 - 0.60.6-0.8 -6 (d) (c) Quiescent -3 -4-5 9.5 10.0 10.5 11.0 11.5 12.0 9.0 9.5 10.0 10.5 11.0 11.5 12.0 9.0 $\log (M_{\star}/M_{\odot})$ $\Phi(\log \mathcal{M})\Delta(\log \mathcal{M}) = \sum_{i=1}^{N} \frac{w_i}{V_{\max, avail, i}}$

EGEE Sept 15, 2014

$$f_{\rm Q} = \frac{\Phi_{\rm Q}}{\Phi_{\rm SF} + \Phi_{\rm Q}}$$

EGEE Sept 15, 2014

• $f_Q(\mathcal{M}_*) = a \log(\frac{\mathcal{M}_*}{\mathcal{M}_{fid}}) + b$

Hahn et al. (in prep)

EGEE Sept 15, 2014

• $f_Q(\mathcal{M}_*) = a \log(\frac{\mathcal{M}_*}{\mathcal{M}_{fid}}) + b$

EGEE Sept 15, 2014

EGEE Sept 15, 2014

Purer high environment subsamples reveal moderate environment dependence

EGEE Sept 15, 2014

Good agreement with other SDSS results : Baldry et al. (2006), Geha et al. (2012)

Hahn et al. (in prep)

NYU CCPP

617 galaxies in 0.1 < z < 0.60

• zCOSMOS sky coverage : 1.7 deg^2

EGEE Sept 15, 2014

2,340 galaxies in 0.1 < z < 0.4 and 2,448 galaxies in 0.4 < z < 0.7</p>

• zCOSMOS sky coverage : 1.7 deg^2

EGEE Sept 15, 2014

zCOSMOS : Kovac et al. (2014)

2,340 galaxies in 0.1 < z < 0.4 and 2,448 galaxies in 0.4 < z < 0.7</p>

 \circ zCOSMOS sky coverage : 1.7 deg^2

EGEE Sept 15, 2014

EGEE Sept 15, 2014

Summary

- Stellar mass complete galaxy sample derived from SDSS and PRIMUS with consistently measured galaxy environment from robust spectroscopic redshifts
- SMF evolution reflect mass-density relation and mass-segregation in different environments for z < 0.8
- fQ consistent with well-known color/morphology mass dependence
- Ic for for both high and low density environments
- $f_{Q, high} > f_{Q, low}$ throughout z < 0.8
- In high density environment has evolved by a greater amount than f_Q in low density environment
 In low density environment