Evolving galaxies in evolving environment (2014/9/15)

The environmental impacts on the star formation main sequence out to z~2

Yusei Koyama (ISAS/JAXA)

MAHALO-Subaru collaboration

Star Formation "Main Sequence" = SFR-M* relation for star-forming galaxies

SF main sequence out to z>2

Galaxy evolution & environment

Main sequence vs. environment (z=0)

SF main sequence is "independent" of environment at z=0

Local star-forming galaxies from SDSS (Peng et al. 2010)

Q: How about in distant universe?

Two big challenges

(1) Distant clusters (z>>1) are very rare.

→ Known (proto-)clusters are now increasing.

(2) Large uniform sample of SF galaxies is required.
 → NB emission-line survey is an ideal solution.

MAHALO-Subaru project

Collaborator: T. Kodama (PI), M. Hayashi, K. Tadaki, I. Tanaka, R. Shimakawa, T. Suzuki, M. Yamamoto

MApping H-Alpha and Lines of Oxygen with Subaru Narrow-band $H\alpha(\lambda=6563A)/[OII](\lambda=3727A)$ survey for 0.4<z<2.6

environ-	target	z	line	λ	camera	NB-filter	conti-	status			
ment				(µm)	Contraction and the second		nuum	(as of Jul. 2014)			
Low-z	CL0024+1652	0.395	Hα	0.916	Suprime-Cam	NB912	z'	Kodama+'04			
cluster	CL0939+4713	0.407	Hα	0.923	Suprime-Cam	NB921	z'	Koyama+'11			
	RXJ1716+6708	0.813	Hα	1.190	MOIRCS	NB1190	J	Koyama+'10			
			[O II]	0.676	Suprime-Cam	NA671	R	observed			
High-z	XCSJ2215-1738	1.457	[O II]	0.916	Suprime-Cam	NB912, NB921	z'	Hayashi+'10,11,14			
cluster	4C65.22	1.516	Hα	1.651	MOIRCS	NB1657	H	Koyama+ '14			
	Q0835+580	1.534	Hα	1.664	MOIRCS	NB1657	H	observed			
	CL0332-2742	1.61	[U U]	0.973	Suprime-Cam	NB973	y	observed			
	ClGJ0218.3-0510	1.62	[O II]	0.977	Suprime-Cam	NB973	y	Tadaki+'12			
Proto-	PKS1138-262	2.156	Hα	2.071	MOIRCS	NB2071	$K_{\rm s}$	Koyama+'13a			
cluster	4C23.56	2.483	Hα	2.286	MOIRCS	NB2288	$K_{ m s}$	Tanaka+'11			
	USS1558-003	2.527	$H\alpha$	2.315	MOIRCS	NB2315	$K_{ m s}$	Hayashi+'12			
General	GOODS-N	2.19	Hα	2.094	MOIRCS	NB2095	$K_{\rm s}$	Tadaki+'11a			
field	(62 arcmin^2)		[O II]	1.189	MOIRCS	NB1190	J	observed			
	SXDF	2.19	Hα	2.094	MOIRCS	NB2095	K	Tadaki+'13,14			
	(110 arcmin^2)		$H\beta$	1.551	MOIRCS	NB1550	H	not yet			
			[O II]	1.189	MOIRCS	NB1190	J	not yet			

MAHALO-Subaru project

Collaborator: T. Kodama (PI), M. Hayashi, K. Tadaki, I. Tanaka, R. Shimakawa, T. Suzuki, M. Yamamoto

MApping H-Alpha and Lines of Oxygen with Subaru

Big advantage of Subaru

High-z structures revealed by MAHALO

HiZELS: High-Z Emission-Line Survey

Collaborator: I. Smail (Durham), D. Sobral (Lisbon), J. Geach (Herts), M. Swinbank (Durham), P. Best (Edinburgh)

Total ~2 deg² survey in COSMOS & UDS

now further extending the survey area.

Filter NB	Field C/U	Detect (3σ)	W/colours #	Emitters (3Σ)	Stars #	Artefacts #	Ηα #
NB921	С	155 542	148 702	2819	247	_	521
NB921	U	236718	198256	6957	775	_	1221
NB _J	С	32345	31 661	700	40	46	425
NB_J	U	21 233	19916	551	49	30	212
NB_H	С	65912	64 453	723	60	63	327
NB_H	U	26084	23 503	418	23	5	188
NB _K	С	99 395	98 085	1359	78	56	588
NBK	U	28276	26 062	399	28	10	184
H_2	С	1054	940	52	3	2	31
H_2	U	1193	1059	33	7	1	14

~500-2000 Ha emitters at each redshift, providing excellent comparison sample for our MAHALO cluster samples.

Sobral et al. (2013)

Cluster vs. Field comparison out to z~2

The MS location is always independent of environment since z~2!

$M\star$, SFR, ΔMS distribution

Massive SF galaxies in z>2 proto-cluster

Red emitters are massive (M \star >10¹¹M \odot), and clearly dominate dense environment at z~2.

Our MOIRCS+NB(H α) survey revealed red H α emitters dominate the core of z=2.16 proto-cluster (PKS1138-262).

(Koyama et al. 2013a)

Clumpy galaxies in z>2 proto-clusters

Dust extinction vs. environment (z=0.4)

Higher dust extinction (different SF mode?) in high-density env.

Conclusions

(1) With MAHALO+HiZELS collaboration, we find that SF main sequence is independent of environment at any time in the history of universe since z~2, suggesting rapid SF quenching.
 → Cluster vs. field difference is always small (~0.1-0.2 dex level)

(2) SF galaxies in z=2.2 proto-cluster environments tend to be more massive (and showing redder J-K colours) than the field counterparts at the same redshift.

 \rightarrow M \star distribution "along" the MS does depend on environment.

(3) SF galaxies "surviving" in high-density environments tend to be more highly obscured by dust, suggesting a different mode of SF activity in clusters/groups.

 \rightarrow Environment may affect dust properties (SF geometry or mode).