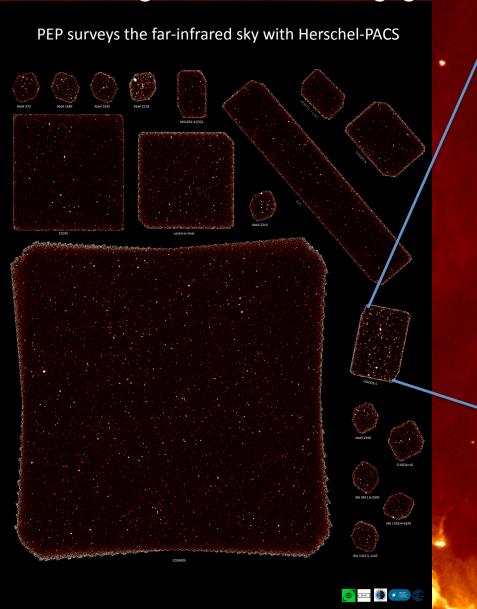
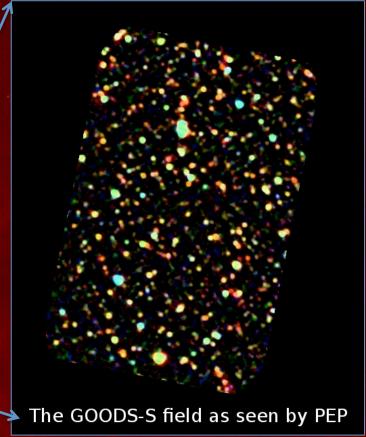
Cosmic Dichotomy in the hosts of star-forming galaxies at low and high redshifts

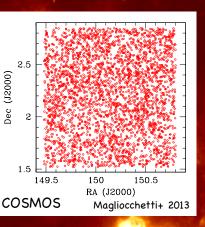
MANUELA MAGLIOCCHETTI
IAPS-INAF

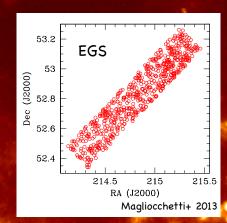

Collaborators: Herschel PEP team (D.Lutz, P.Popesso, D.Rosario et al.) & A.Lapi, M.Negrello, G.De Zotti., G.Danese

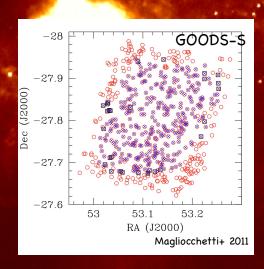

Credits for image: Hi-GAL

Outline

- -Clustering of star-forming galaxies:
 the Herschel/FIR view
- -Clustering of star-forming galaxies:
 the multi-wavelength view
- Possible scenarios for evolution into galaxies/AGN

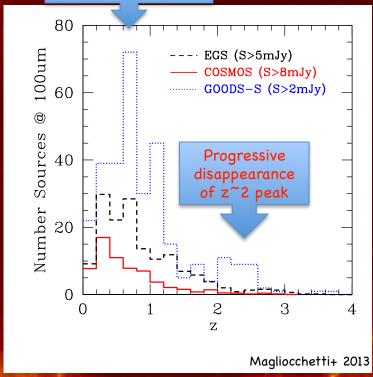

Clustering of star-forming galaxies: the Herschel view

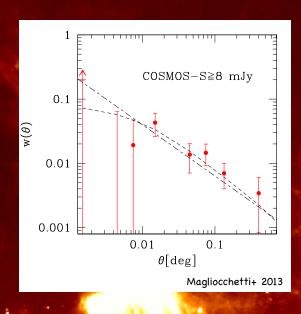


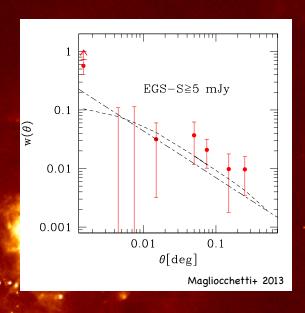


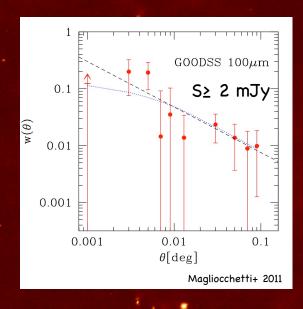
Concentrate on COSMOS, EGS and GOODS-S as either wide enough or deep enough to ensure statistically meaningful clustering measurements

<u>Clustering of star-forming galaxies with Herschel: characteristics of the fie</u>

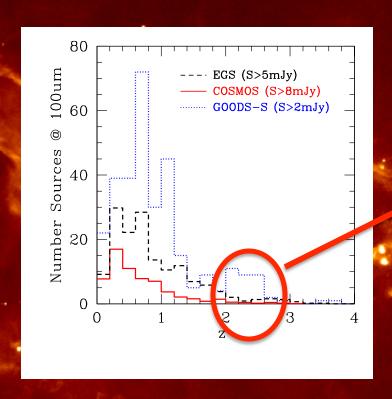


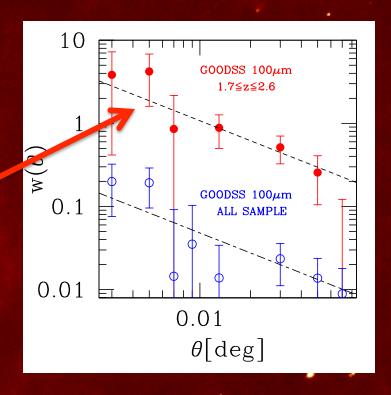






CLUSTERING PROPERTIES OF HERSCHEL-SELECTED GALAXIES I

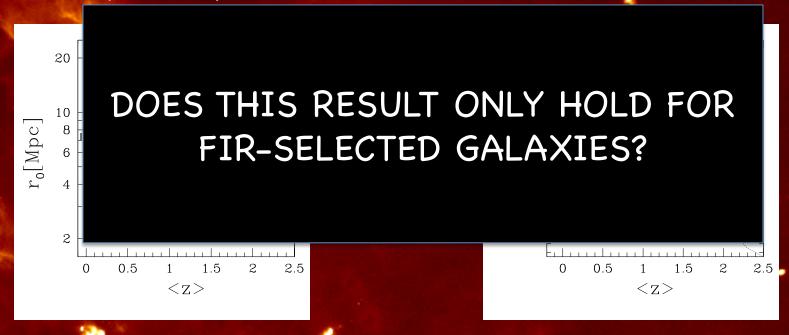




 $S_{100 \mu m} > 8 \text{ mJy}$ $r_0 \sim 4.3 \text{ Mpc}$ $M_{halo} > \sim 10^{11.6} M_{sun}$ S_{100 μ m}>5 mJy r₀~5.8 Mpc M_{halo}>~10^{12.4} M_{sun} S_{100 μ m}>2 mJy r₀~6.3 Mpc M_{halo}>~10^{12.5} M_{sun}

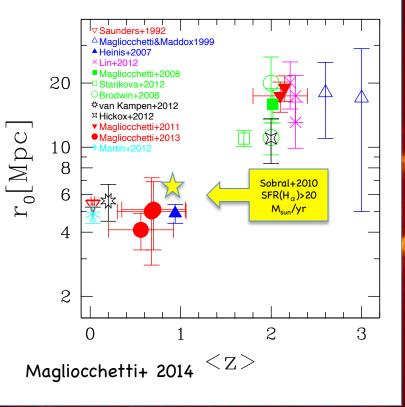
r₀ and M_{halo} increase for decreasing fluxes

THE CLUSTERING PROPERTIES OF HERSCHEL-SELECTED GALAXIES II



Galaxies at z~2 are 10 times more strongly clustered than the whole GOODS-S (and also COSMOS and EGS) sample MALMQUIST BIAS (i.e. luminosity dependent) EFFECT?

THE CLUSTERING PROPERTIES OF FIR-SELECTED GALAXIES


Consider clustering measurements of FIR sources <u>all</u> selected at $60\mu m$ rest frame All PEP galaxies with comparable SFR $\ge 100 M_{sun}/yr \rightarrow minimization of bias effects Relevant quantities plotted as a function of median z of survey$

DESPITE SIMILAR SELECTION CRITERIA SOURCES @ z~2 ARE A FACTOR 3 MORE CLUSTERED THAN LOCAL, z<1 COUNTERPARTS.

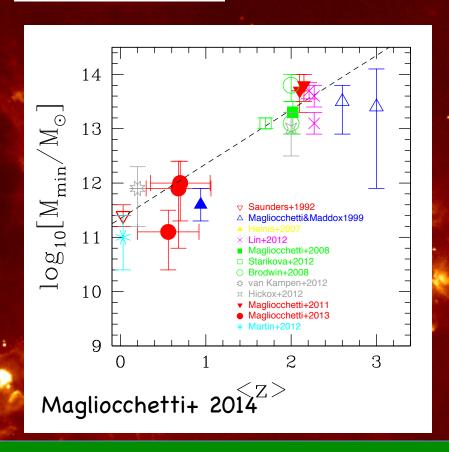
REFLECTED IN EVOLUTION OF HALO MASS WHICH INCREASES FACTOR ~10² BETWEEN z~1 AND z~2

THE CLUSTERING PROPERTIES OF RAPIDLY STAR-FORMING SYSTEMS AT LOW AND HIGH Z

CONSIDER CLUSTERING MEASUREMENTS
OF <u>ALL</u> SF GALAXIES AVAILABLE IN THE
LITERATURE

Galaxies selected at all z <u>only on the</u> <u>basis of their bolometric luminosity/SFR</u>. Minimum 30 ≤SFR_{min}≤ a few 10³ M_{sun}/yr.

Data homogenized to correct for cosmology and γ dependence


Groups with same colour-coding selected at same rest-frame frequency

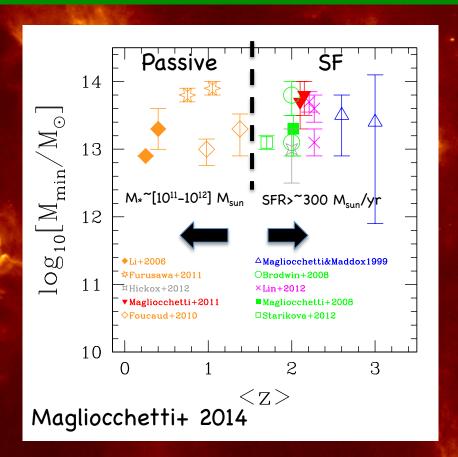
Blue: UV selection (SFR_{min} ~ a few 10¹ M_{sun}/yr) Green: mid-IR selection (SFR_{min} ~ a few 10³ M_{sun}/yr)

Magenta: BzK selection (SFR_{min}~[30-100] M_{sun}/yr) Black: sub-mm selection (SFR_{min}~[60-900] M_{sun}/yr)

Irrespective of the selection technique and only very mildly depending on the SFR, clustering lengths of <u>ALL</u> very active star-forming galaxies present sharp increase from \sim 5 Mpc to \sim 15-20 Mpc (> factor 3) when moving from z≤1 to z≥2.

IS THAT AN EXPECTED EFFECT DUE TO INCREASE OF BIAS WITH Z AT CONSTANT MASS?

Quick answer: NO!


Halo masses also increase by about 2 orders of mag from $^{\sim}10^{11.5}$ – 10^{12} M_{sun} at z≤1 to $10^{13.5}$ M_{sun} and higher at z≥2

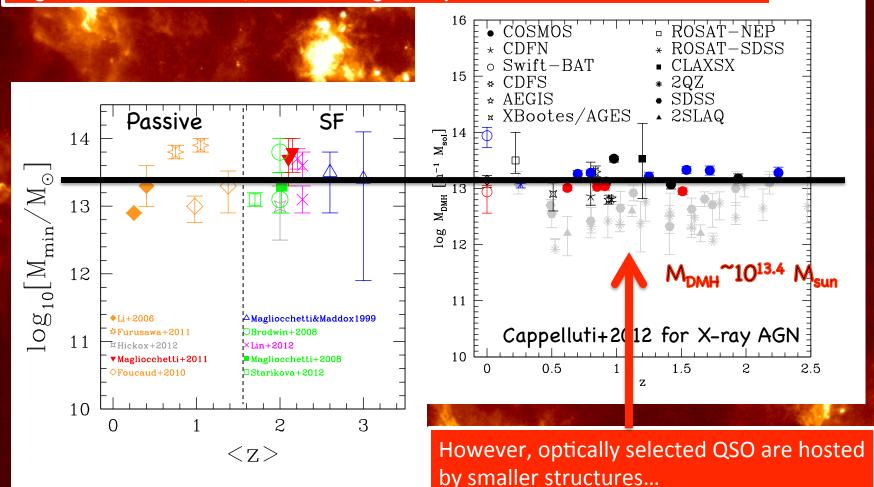
As for r_0 , very little spread amongst low-z group and high-z group (~independence of SFR)

GALAXIES WHICH ACTIVELY FORM STARS AT HIGH z ARE NOT THE SAME POPULATION WE OBSERVE IN THE MORE LOCAL UNIVERSE. VIGOROUS STAR FORMATION IN THE EARLY UNIVERSE IS HOSTED BY VERY MASSIVE STRUCTURES, WHILE FOR $z \le 1$ A COMPARABLE ACTIVITY IS ENCOUNTERED IN MUCH SMALLER SYSTEMS \rightarrow DOWNSING (M_{halo} propto z)

WHAT HAPPENS TO HIGH-z STAR-FORMING GALAXIES?

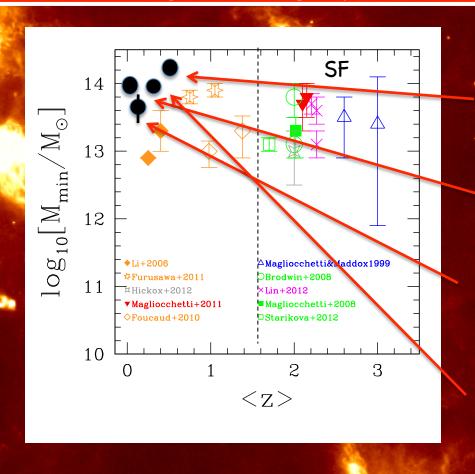
- Space densities of SF galaxies @ z^2 indicate the rapid star-forming phase is very common amongst massive galaxies (1 out of 2).
- Estimate T_{SF}~1 Gyr (see also Granato+ 2004; Lapi+ 2006 model).
- Merging excluded as dominant trigger of rapid SF phase as either too low masses or too short T_{SF} (e.g. Baugh+ 2005: Narayanan+2009)

For typical SFR~300 M_{sun}/yr at the end of phase galaxy with M_{*}~3 10¹¹ M_{sun} → look for clustering properties of low-z passive galaxies with very high M_{*}


-High-z points: star-forming galaxies -z≤1.5 points : early type galaxies with M_{*}~[10¹¹-10¹²] M_{sun}

Halo masses $\sim [10^{13}-10^{14}] M_{sun} \rightarrow$ \rightarrow perfect agreement with high-z values

WHERE DO AGN FIT IN THIS SCENARIO?


AGN vs Star-forming Galaxies: the X-ray band

Remarkable agreement between clustering properties of high-z SF-low-z passive galaxies and those of X-ray selected AGN. High SFR SFG \rightarrow X-ray AGN \rightarrow high M* passive?

AGN vs Star-forming Galaxies: the radio band

Clustering properties of relatively local radio galaxies still compatible (although on the high side) with those of intense SF galaxies at z>~1.5. High SFR SFG-> radio galaxies -> group environment?

Wake+2008 for L_{1.4GHz}>10²⁴ W/Hz 2SLAQ LRG sources (possibly biased high).

Peacock & Nicholson 1991 S_{1.4GHz}>0.5 Jy

Magliocchetti+ 2004 For FIRST/2dF AGN S_{1.4GHz}>1 mJy

Lindsay+ 2014 FIRST/GAMA S_{1.4GHz}>1 mJy

CONCLUSIONS

Star forming galaxies at high and low redshifts are two different populations.

Low-z (z<~1) intense star formation takes place in small galaxies $(M_{DMH}~10^{11.5}~M_{sun})$ over long timescales.

Only a fraction of virialized halos will host the SF event and such a fraction decreases for decreasing redshifts

The same intense star formation activity (SFR>~ 30 M_{sun}/yr) at z>~1.5 takes place in very massive galaxies (M_{DMH} ~10^{13.5} M_{sun}) on relatively short timescales (T_{SF} ~1 Gyr).

It is a very common event: about 1 out of 2 galaxies at z=2 is found in the rapid star forming stage.

At z<~1.5-2 high SFR sources evolve in passive galaxies with M*~1011-1012 Msun

Tantalizing resemblance between clustering properties of intense SF galaxies at z>~1.5 and of X-ray (and also possible radio) selected AGN at all z point towards evolutionary connection between these populations.

What about optically selected QSOs?