The underlying massive structures revealed by high-redshift radio galaxy and quasar environments

Álvaro Orsi

Centro de Estudios de Física del Cosmos de Aragón (CEFCA), Teruel, Spain

Nikos Fanidakis (MPIA, Heidelberg), Cedric Lacey and Carlton Baugh (ICC, Durham)

Tracers of protoclusters at high redshifts

- Hot gas in X-rays (z≤2)
- Galaxy over-densities
- * Ly α blobs
- Radio galaxies
- Quasars

Bañados et al. (2013)

Measuring over densities

- Over-density measurement depends on the view angle
- Projection effects smear out the over-density signal
- Redshift uncertainties
- Redshift-space effects

Quasars and radio galaxies as tracers of massive structures

- Radio galaxies typically found in denser environments
 - Even denser than average galaxies with the same mass (Hatch+2014)
- Emission-line galaxies, such as Lyα emitters are ideal tracers of environments at high redshift
 - * Narrow-band and spectroscopic detections, low σ_z
 - * Venemans et al. (2005, 2007) derived $M_{\rm DM} \approx 3-6 \times 10^{14} M_{\odot}$

Venemans et al. (2005) 💷

Quasars and radio galaxies as tracers of massive structures

- Quasars typically regarded as tracers of massive structures
- Contradictory evidence for over densities around QSOs (e.g. see Husband+13, Bañados +13)
- AGN feedback predicted to be effective in massive haloes, shutting off quasar activity (Fanidakis+13)

QSOs and radio galaxies appear to have similar galaxy environments Radio galaxies are hosted by haloes significantly more massive than those hosting QSOs

Monte Carlo radiative transfer of Lyα photons

Verhamme et al. (2006)

- Follow the scattering histories of a large set of individual photons as they pass through a HI cloud
- Ly α photons escape through simple galactic 0.8 outflow
- Semi-analytical model computes

$$f_{\rm esc}(SFR, M_{\rm cold}, V_{\rm circ}, Z_{\rm cold}, r_{1/2})$$

Emission-line galaxies tend to avoid massive haloes!

- Nebular emission traces recent star-formation events (~10 Myr). Starformation quenching shuts off line luminosities

Log₁₀ (Correlation Function)

 $\int_{-20}^{20} \int_{0}^{10} \int_{0}^{$

Clustering bias is low
(b~2-3) compared to other
galaxy populations (e.g.
LRGs, LBGs, SMGs)

Clustering of ELGs around protoclusters

- 2 samples of LAEs:
 - Shallow (bright): $L_{Ly\alpha} > 10^{42} [\mathrm{ergs}^{-1} \mathrm{h}^{-2}]$
 - ★ Deep (faint): $L_{Ly\alpha} > 10^{41} [ergs^{-1}h^{-2}]$
- Cross-correlation functions reflect that radio galaxies are hosted by more massive haloes than QSOs
- Faint Lyα emitters are more clustered at small scales
- The same result is found for Hα emitters @ z=2.2

Clustering of ELGs around protoclusters

Overdensity δ(r) is related to ξ(r)
but is easier to measure

$$\xi_{cc}(r) = \frac{1}{3r^2} \frac{d\delta(r)}{\mathrm{d}r}$$

- Radio galaxy environments are denser and have less scatter
- Significant scatter in the overdensity around QSOs
- Non-negligible fraction of QSOs with an under-dense environment

Tracing the dark matter mass in a protocluster

*Typically, the DM mass is estimated by using $M_{\rm DM} = \rho V (1 + \frac{\delta_g}{b})$

Our model predicts a correlation using simple observables: - Integrated luminosity:

$$M_{\rm DM} = 3.6 \times 10^{11} \delta^{0.5} \left(\frac{L_{\rm Ly\alpha}^{\rm tot}}{10^{40}}\right)^{0.9 - 0.03\delta}$$

 z=0 descendant mass can also be related with the integrated luminosity

- Star-formation enhancement at z=4.5?
- More massive galaxies in denser environments at high redshifts

Saito et al. (2014)

- Star-formation enhancement at z=4.5?
- More massive galaxies in denser environments at high redshifts
- sSFR increase not visible when inferring the SFR from Hα alone
 - Dustier galaxies in overdense environments?

Koyama et al. (2013) 💷

Stellar mass of LAEs around radio galaxies is larger

- Stellar mass of LAEs around radio galaxies is larger
- SFR of observed LAEs has no significant environmental dependence

- Stellar mass of LAEs around radio galaxies is larger
- SFR of observed LAEs has no significant environmental dependence
- Gas metallicities are higher towards denser environments

- Stellar mass of LAEs around radio galaxies is larger
- SFR of observed LAEs has no significant environmental dependence
- Gas metallicities are higher towards denser environments
- sSFRs of LAEs show some environmental dependence

Projected $\delta(\mathbf{r})$ at high redshift

- Redshift uncertainties can lead to significantly different values of δ(r)
- New spectrographs have the ability to map the environments of high redshift protoclusters with high accuracy!
- Narrow-band surveys are suitable to study larger scales (r~10 Mpc/h)

Conclusions

- Characterising high redshift protoclusters is a challenging task
- High redshift radio galaxies are predicted to be tracers of the most massive protoclusters
- Environmental effects at high redshifts offer new probes of galaxy formation physics
- New multi-object spectrographs and IFUs (e.g. MUSE, KMOS, MOSFIRE, MOONS) can study the environments of high redshift galaxies with great accuracy