The assembly history of galaxies and their environment

Rita Tojeiro University of St. Andrews

with **Lizzie Eardley**, John Peacock, Catherine Heymans (IfA, Edinburgh)

on GAMA data.

Outline

- Background and motivation:
 - the expectations and observations of halo assembly times assembly bias;
 - simulations and observations.
- This work:
 - tools and data: geometric environment, VESPA and GAMA;
 - some estimators, plots and preliminary words.
- On-going and future work.

Halo assembly bias

Halo assembly bias

- Theoretical models of the halo-galaxy relationship assume that galaxy populations in DM halos depend only on halo mass.
 - very successful at describing the clustering of galaxies of different luminosity, colour or environment.

Halo assembly bias

- Theoretical models of the halo-galaxy relationship assume that galaxy populations in DM halos depend only on halo mass.
 - very successful at describing the clustering of galaxies of different luminosity, colour or environment.
- However, simulations shows that the clustering of DM halos depends not only on their mass but also - often in a complex way - on their assembly history. I.e. halos of the same mass cluster differently according to how long ago they assembled their mass: **assembly bias**.

 Halo assembly bias detected in simulations [Gao, Springel & White 2005; Wechsler et al. 2006; Gao & White 2007; Croton, Gao & White 2007; Li, Mo & Gao 2008], usually by studying clustering strength as a function of halo assembly time at fixed halo mass.

- Halo assembly bias detected in simulations [Gao, Springel & White 2005; Wechsler et al. 2006; Gao & White 2007; Croton, Gao & White 2007; Li, Mo & Gao 2008], usually by studying clustering strength as a function of halo assembly time at fixed halo mass.
- Results are less clear in data. Using galaxy clustering amplitude some have found evidence on galaxy properties that is consistent with assembly bias [e.g. Yang, Mo & van den Bosh 2006, Wang et al. 2008, 2013], but using different techniques others have not [e.g. Blanton & Berlind 2007; Tinker et al. 2008].

- Halo assembly bias detected in simulations [Gao, Springel & White 2005; Wechsler et al. 2006; Gao & White 2007; Croton, Gao & White 2007; Li, Mo & Gao 2008], usually by studying clustering strength as a function of halo assembly time at fixed halo mass.
- Results are less clear in data. Using galaxy clustering amplitude some have found evidence on galaxy properties that is consistent with assembly bias [e.g. Yang, Mo & van den Bosh 2006, Wang et al. 2008, 2013], but using different techniques others have not [e.g. Blanton & Berlind 2007; Tinker et al. 2008].
- Recently Zentner et al. 2014, for example, showed that ignoring halo assembly bias results in a systematic bias of the inferred galaxy-halo relationship from clustering in simulations.

• We want to explore this issue using two new tools:

- We want to explore this issue using two new tools:
 - Geometric environment classifications, that trace the tidal field and provide a robust estimate of global environment.

- We want to explore this issue using two new tools:
 - Geometric environment classifications, that trace the tidal field and provide a robust estimate of global environment.
 - The detailed star-formation histories of galaxies, inferred from the fossil record, that trace their stellar-mass assembly history. We take this as a proxy for halo-assembly history.

- We want to explore this issue using two new tools:
 - Geometric environment classifications, that trace the tidal field and provide a robust estimate of global environment.
 - The detailed star-formation histories of galaxies, inferred from the fossil record, that trace their stellar-mass assembly history. We take this as a proxy for haloassembly history.
 - (A group catalogue, that provides group masses which we take as a proxy for halo mass.)

- We want to explore this issue using two new tools:
 - Geometric environment classifications, that trace the tidal field and provide a robust estimate of global environment.
 - The detailed star-formation histories of galaxies, inferred from the fossil record, that trace their stellar-mass assembly history. We take this as a proxy for halo-assembly history.
 - (A group catalogue, that provides group masses which we take as a proxy for halo mass.)
- We want to look for evidence of assembly bias in the galaxy population, which would manifest itself as a dependence of stellar-mass assembly on geometric environment for fixed group mass.

- We want to explore this issue using two new tools:
 - Geometric environment classifications, that trace the tidal field and provide a robust estimate of global environment.
 - The detailed star-formation histories of galaxies, inferred from the fossil record, that trace their stellar-mass assembly history. We take this as a proxy for haloassembly history.
 - (A group catalogue, that provides group masses which we take as a proxy for halo mass.)
- We want to look for evidence of assembly bias in the galaxy population, which would manifest itself as a dependence of stellar-mass assembly on geometric environment for fixed group mass.
- Ultimately, we look for a better way to re-parametrise halo-galaxy relation models.

The GAlaxy and Mass Assembly Survey

- A multi-wavelength, spectroscopic survey of the low redshift Universe (z < 0.5).
- Fibre spectroscopy using AAT/2dF+AAOmega
- Area: ~290 deg² split over 5 regions
- Main sample: ~300k galaxies to r < 19.8 mag
- <z> ~ 0.27
- $R = 1300, 370 < \lambda < 880 \text{ nm}$

• GAMA spectra suffer from problematic spectrophotometric calibration.

- GAMA spectra suffer from problematic spectrophotometric calibration.
 - We have rescaled the spectra to the optical SDSS photometry using a linear interpolation in the optical bands.

- GAMA spectra suffer from problematic spectrophotometric calibration.
 - We have rescaled the spectra to the optical SDSS photometry using a linear interpolation in the optical bands.
 - Tests show positive effect: we recover more physical solutions, better agreement with independent measurements (e.g. stellar masses) and scaled spectra populate PCA parameter space as they should.

The fossil record of galaxies using VESPA

The fossil record of galaxies using VESPA

We can reconstruct the **star-formation history** of a galaxy from the fossil record.

Estimators of stellar-mass assembly time

(a) $t_{0.85}$ - time in Gyrs at which 85% of stellar mass had assembled.

(b) Mass-weighted age in Gyrs.

(c) fraction of young stars (age < 275 Myrs).

-> each computed from the full SFH from each galaxy.

Environment classifications (more of Lizzie's work)

VOIDS

- SHEETS
- FILAMENTS
- KNOTS

Tidal Tensor Prescription: $T_{ij} = \frac{\partial^2 \phi}{\partial q_i \partial q_j}$

Second derivative of gravitational potential indicates whether point is near a potential minima or potential maxima.

Eigenvalues of T_{ij} determine geometrical nature of each point in space.

Number of positive eigenvalues corresponds to the dimension of the stable manifold.

Application to GAMA (still Lizzie's work)

Application to GAMA (still Lizzie's work)

Stacked spectra

- Geometric environment classifications from Lizzie Eardley.
- Group masses from G³Cv1 group catalogue from Robotham et al. 2011

SFHs and assembly times

- Geometric environment classifications from Lizzie Eardley.
- Group masses from G³Cv1 group catalogue from Robotham et al. 2011.
- SFHs and assembly times from VESPA.

Tentative statement:

at fixed group/halo mass, we find no dependence of the stellar assembly time on geometric / global environment.

- Do our estimators trace halo assembly times?
 - Hard to imagine a scenario where they don't *to some extent*. We are sourcing suitable **simulations** with which to study this in detail.
 - Even if so, can we assign all effects of global environment on galaxy properties to assembly bias? What about super-halo interactions?

- Do our estimators trace halo assembly times?
 - Hard to imagine a scenario where they don't *to some extent*. We are sourcing suitable **simulations** with which to study this in detail.
 - Even if so, can we assign all effects of global environment on galaxy properties to assembly bias? What about super-halo interactions?
- Do we have signal to properly disentangle both properties? Is it robust?
 - Sample to increase by a **factor of 5 + photometry**.
 - (Important) technicalities: robustness to env classifications, SSP models, group masses.

٠

- Do our estimators trace halo assembly times?
 - Hard to imagine a scenario where they don't *to some extent*. We are sourcing suitable **simulations** with which to study this in detail.
 - Even if so, can we assign all effects of global environment on galaxy properties to assembly bias? What about super-halo interactions?
- Do we have signal to properly disentangle both properties? Is it robust?
 - Sample to increase by a factor of 5 + photometry.
 - (Important) technicalities: robustness to env classifications, SSP models, group masses.
 - Can we reconcile with assembly bias measured by others?

- Do our estimators trace halo assembly times?
 - Hard to imagine a scenario where they don't *to some extent*. We are sourcing suitable **simulations** with which to study this in detail.
 - Even if so, can we assign all effects of global environment on galaxy properties to assembly bias? What about super-halo interactions?
- Do we have signal to properly disentangle both properties? Is it robust?
 - Sample to increase by a **factor of 5 + photometry**.
 - (Important) technicalities: robustness to env classifications, SSP models, group masses.
- Can we reconcile with assembly bias measured by others?
- What about **galaxy assembly bias**? Coming next!

Thank you.

Rita Tojeiro University of St. Andrews

with **Lizzie Eardley**, John Peacock, Catherine Heymans (IfA, Edinburgh)

on **GAMA** data.

