The Phase-Space of z~1 Clusters: A View from Spitzer and Herschel

Allison G. Noble
University of Toronto

Tracy Webb, Howard Yee, Adam Muzzin, Gillian Wilson, and the SpARCS Collaboration
How does Environment Influence Galaxy Evolution?

Hierarchical Structure Formation

Discrete Galaxy Populations within Clusters

galaxies accreted at early times vs galaxies accreted recently

Credit: Volker Springel - MPIA
Stellar Mass/Environment Covariance

<table>
<thead>
<tr>
<th>Nature vs Nurture</th>
<th>Mass</th>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction of star-forming galaxies</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SFR per unit mass (SSFR)</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Age of star-forming galaxies</td>
<td>✓</td>
<td>✗</td>
</tr>
</tbody>
</table>

- e.g., Kauffmann+ 2004
- Peng+ 2010
- Muzzin+ 2012
- Wetzel+ 2012
Stellar Mass/Environment Covariance

Nature vs Nurture

Mass

- Fraction of star-forming galaxies ✓ ✓
- SFR per unit mass ✓ ✗
- Age of star-forming galaxies ✓ ✗

Environment

- Rapid Quenching of Star Formation?

E.g., Kauffmann+ 2004
Peng+ 2010
Muzzin+ 2012
Wetzel+ 2012
Stellar Mass/Environment Covariance

Nature vs Nurture

<table>
<thead>
<tr>
<th>Fraction of star-forming galaxies</th>
<th>Mass</th>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>❑</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

| SFR per unit mass | ❗ | ❗ |
| Age of star-forming galaxies | ✓ | ❗ |

How well do we understand “environment”? e.g., Kauffmann+ 2004, Peng+ 2010, Muzzin+ 2012, Wetzel+ 2012
The Next Step

How does cluster environment shape galaxy evolution at $z>1$?

How we accomplish this

• a homogenous sample of high-z clusters, with spectroscopy
 \rightarrow SpARCS/GCLASS

• accurate star formation rates
 \rightarrow 24um-Spitzer, 100/160/250/350/500um-Herschel

• develop a dynamical definition for environment
 \rightarrow accretion histories can isolate dynamically distinct galaxy populations
SpARCS Cluster Survey/GCLASS

- >200 massive infrared-selected cluster candidates
- 42 sq. deg. survey with deep z' band imaging
- **GCLASS**: 10 spectroscopically confirmed clusters from $0.86 < z < 1.34$ with ~500 members above $2 \times 10^9 M_\odot$

Figure 1. $g_z[3.6\mu m]$ color images of the nine GCLASS clusters used in this analysis. The field of view of each image is $7' \times 7'$, which is approximately the area covered by the spectroscopic observations and corresponds to 3.5 Mpc on a side at $z=1$. Rich clusters at $z\sim 1$ show a range of morphologies, from roughly spherical and centrally concentrated with a clear central galaxy (e.g., SpARCS J003645$-$441050, $z=0.869$) to asymmetric with filamentary-like structure and no clear central galaxy (e.g., SpARCS 104737$+$574137, $z=0.956$). (A color version of this figure is available in the online journal.)

Muzzin et al. 2012

Noble et al 2013

Muzzin et al 2012
Results: $z=0.871$ Star-Forming Cluster Galaxies

Integrated SFR per total stellar mass of all cluster members increases with radius, but...

SSFR of star-forming galaxies is flat with radius

\rightarrow rapid quenching?

Noble et al 2013
Results: $z = 0.871$ **Star-Forming Cluster Galaxies**

- MIPS cluster members
- Star-forming galaxies

Integrated SFR per total stellar mass of all cluster members increases with radius, but...

SSFR of star-forming galaxies is flat with radius

→ rapid quenching?

Are we truly sampling **star-forming galaxies** in distinct environments?
Isolating Accretion Histories with Simulations

Haines et al. 2012

Line-of-sight velocity (v/σ) vs. Clustercentric radius (r/r_{500})

Redshift at which galaxy is accreted by cluster

- 0.21
- 0.28
- 0.36
- 0.46
- 0.56
- 0.69
- 0.83
- 0.99

see also:
- Biviano+ 2002
- Mamon+ 2004
- Gill+ 2005
- Mahajan+ 2011
- Oman+ 2013
Isolating Accretion Histories with Simulations

Haines et al 2012

Line-of-sight velocity (v/σ)

Clustercentric radius (r/r_{500})

Redshift at which galaxy is accreted by cluster

Caustic profiles kinematically isolate different accretion histories

Isolating Accretion Histories in Phase-Space

Noble et al. 2013
Conclusion: An accretion-based definition of environment yields a ~ 1 dex depression of SSFR at low values of $r \times \Delta v$.

Diagram: Specific SFR versus $r \times \Delta v$ at $z=0.871$.
Stacked Specific SFR versus $r \times \Delta v$ at $z \sim 1.2$

Same depression of SSFR at low values of $r \times \Delta v$ (early accretion) with larger sample and MIPS sample.
Dust Temperature versus $r \times \Delta v$

Intermediate phase-space bin has coolest dust temperature

Noble et al in prep
A Possible Quenching Model?

Strangulation
removal of warm gas/dust;
gradual or no decline in SFR

Ram-pressure stripping
removal of cold atomic disk gas;
delayed then rapid quenching of star formation

Noble et al in prep
Conclusions

• a dynamical definition for environment based on phase-space trumpet profiles \((r \times \Delta v)\) offers a unique snapshot of distinct galaxy populations that have been accreted at different periods of cluster formation

• we see a decline in the specific SFR of cluster star-forming galaxies with caustic environment - moving from regions of recently accreted galaxies to earliest accreted galaxies

• we see a slight decline in the dust temperature for galaxies in the intermediate phase-space bin

• we suggest one plausible quenching model with combination of strangulation and ram-pressure stripping