The Phase-Space of z~I Clusters: A View from Spitzer and Herschel

Allison G. Noble University of Toronto

Tracy Webb, Howard Yee, Adam Muzzin, Gillian Wilson, and the SpARCS Collaboration

How does Environment Influence Galaxy Evolution? Hierarchical Structure Formation

Distinct Galaxy Populations within Clusters

galaxies accreted at early times

VS

galaxies accreted recently

Credit: Volker Springel - MPIA

The Next Step

How does cluster environment shape galaxy evolution at z>1?

How we accomplish this

- a homogenous sample of high-z clusters, with spectroscopy
 → SpARCS/GCLASS
- accurate star formation rates

→ 24um-Spitzer, 100/160/250/350/500um-Herschel

develop a dynamical definition for environment
 → accretion histories can isolate dynamically distinct galaxy populations

SpARCS Cluster Survey/GCLASS

- >200 massive infraredselected cluster candidates
- 42 sq. deg. survey with deep z' band imaging
- GCLASS: 10 spectroscopically confirmed clusters from 0.86 < z < 1.34 with ~500 members above 2e9 M⊙

Muzzin et al 2012

SpARCS Cluster Survey/GCLASS

- z = 0.871
- 85 spectroscopic cluster members
- 24um imaging
- $M_{200} = 2.6 \times 10^{15} \, M_{\odot}$

Noble et al 2013

• z ~ I.2

- I23 spectroscopic cluster members → stacking
- 100/160/250/350/500um imaging

•
$$M_{200} = 1 - 4 \times 10^{14} M_{\odot}$$

SpARCS J161314+564930 SpARCS J003442-430753 SpARCS J003645-441050 x = 0.867SpARCS J021524-034331 SpARCS J104737+574137 SpARCS J105111+581803 $z_{spec} = 1.004$ SpARCS J161641+554513 SpARCS J163435+402151 SpARCS J163852+403843 $s_{\rm spec} = 1.177$ $s_{\rm spec} = 1.196$

Muzzin et al 2012

Noble et al in prep

Results: z=0.871 Star-Forming Cluster Galaxies

→rapid quenching?

Results: z=0.871 Star-Forming Cluster Galaxies

Are we truly sampling star-forming galaxies in distinct environments?

Isolating Accretion Histories with Simulations

Isolating Accretion Histories with Simulations

Isolating Accretion Histories in Phase-Space

Caustic profiles kinematically isolate different accretion histories

Specific SFR versus $r \propto \Delta v$ at z=0.871

Stacked Specific SFR versus r x Δv at z~1.2

Dust Temperature versus r x Δv 60 F Field z~1.2 Clusters Intermediate 50 E phase-space bin 40 | has coolest dust temperature 30 20 0.5 0.0 1.0 1.5

 $(r/r_{200}) \times (\Delta v/\sigma_v)$

Dust Temperature (K)

Noble et al in prep

A Possible Quenching Model?

Conclusions

- a dynamical definition for environment based on phase-space trumpet profiles ($r \ge \Delta v$) offers a unique snapshot of distinct galaxy populations that have been accreted at different periods of cluster formation
- we see a decline in the specific SFR of cluster star-forming galaxies with caustic environment moving from regions of recently accreted galaxies to earliest accreted galaxies
- we see a slight decline in the dust temperature for galaxies in the intermediate phase-space bin
- we suggest one plausible quenching model with combination of strangulation and ram-pressure stripping