The cosmic evolution of
radio-AGN feedback to z=1




“AGN feedback” 1n galaxy models

Different modes of “AGN feedback”

are currently postulated to explain
many issues in galaxy evolution

® MgH Vs MBulge relationship

e Avoidance of over-production of
massive galaxies

e “Old, red and dead” ellipticals
Recurrent radio-loud AGN activity 1
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“Standard” AGN activity
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“Radiative/Quasar-mode” AGN:

e Luminous accretion disk
- optically thick
- geometrically thin
- associated X-ray corona

e Bright line emission
- UV ionising radiation from disk

¢ Dusty obscuring structure
- emits in IR/sub-mm

¢ Orientation-dependent observed
properties
- Type 1 vs Type 2 AGN

e Sometimes, extended radio jets



Another class of AGN

Other AGN, exemplified by weak
radio sources, don’t fit this
scheme:

e No strong emission lines
- (Hine & Longair 1979)
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Another class of AGN

Other AGN, exemplified by weak
radio sources, don’t fit this
scheme:

e No strong emission lines
- (Hine & Longair 1979)

e No IR emission from torus
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Another class of AGN

Other AGN, exemplified by weak
radio sources, don’t fit this
scheme:

e No strong emission lines
- (Hine & Longair 1979)

e No IR emission from torus
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Why different AGN?

Accretion flow modelling (e.g.
Narayan & Y1 1994,5) predicts a
change 1n the nature of accretion
flows at low fractions of Eddington:

e high accretion: optically thick,
geometrically thin disk; strong
radiative emission, sometimes also
with jets

Log (nMc?®/ L)

e low accretion: radiative-inefficient
advecuon_dommate(.l accretion kinetic AGN output for accretion
flow (ADAF/RIAF): most energy rates at low fractions of Eddington,

comes out as jets - ‘jet-mode’ AGN  and radiative output at high fractions
(Merloni & Heinz 2008)

Schematic of the switch between

e accretion mode switch 1s observed
in micro-quasars, at about 1% Edd.



Testing accretion mode picture

Best & Heckman 2012, MNRAS, 421, 1569

e Cross-match SDSS DR7 with radio wevwnngo Perseus
catalogues: ~18,000 sources

e (Classify as radiative-mode (high-
excitation) or jet-mode (low-excit.)
- using SDSS emission line ratios

e Calculate Eddington fraction, fgdd:

® fraa= L/LEgdd = (Lrad i Lmech) / LEdd
- black hole mass from velocity disp. T o—
- radiative luminosity from [OIII] P
5007 emission line luminosity
- mechanical luminosity from radio
luminosity (cavities/synchrotron)

1 arcmin ~ 21.4 kpc
e =

10g,o(Pcay / W)
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Testing accretion mode picture

Best & Heckman 2012, MNRAS, 421, 1569

e Cross-match SDSS DR7 with radio
catalogues: ~18,000 sources

e (Classify as radiative-mode (high-

excitation) or jet-mode (low-excit.) — “Fageamon ;

. . . . . [ —— Low-excitation ]

- using SDSS emission line ratios ol oo Lovenmax :
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e Calculate Eddington fraction, fr4q: § ; 3 5

® fEad = L/Ledd = (Lrad + Limech) / LEaa £ ** ;
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Jet-mode AGN energetics

The fraction of galaxies that host jet-mode radio-AGN 1s a very strong

function of galaxy mass
- these AGN are 1n ‘old,red,dead’ systems which need feedback

- hosted by central galaxies, generally not satellites
Their low accretion rates can be supplied by gas cooling from hot halo

Evaluate time-averaged heating rate from recurrent jet-mode activity
- closely balances cooling losses from surrounding hot gas halo

1 - E-m 455' L i EL i B B BB B B R L B R B ""6'5
10 oL >10% e : . . R
B i b Heating vs cooling:
o > o’ A = ‘
C OLi4aH, 210 R = (Best et al 2006)
102} 245 g a3t o .
810w, 4,2 10%9, s TS
© ‘0 ‘ =
= i 2 a2p =
Z 10 s :
(<D 10 3 . :" me b MR e _;
= . S = 2 A A2 S S N E
o = R -
10* ? ........ "','é‘ i3 E
"" = Low Excitation Wbt E
-&High Excitation e E
105 T 115 12 8E e
85 9.0 9.5 10.0 10.5 11.0 11.5 12.0

I°g10(MJMsun) Log(LH / LH,suIar)



A radio-AGN feedback cycle

Hot gas emits in X-rays and cools.

(faster in more massive systems)

Radio-AGN act as a

No more fuel for ICSSUER LR (Cooling rate increases;
black hole, so radio- controlling the some gas falls onto the
AGN is switched off |[EECSISLUEINELERE central black hole

gas. Maintains host

galaxy as “old, red
and dead”

Hot X-ray gas 1s Radio-AGN switched

heated by AGN;

on. Jets deposit energy
into surrounding gas

gas cooling stops
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Cosmic evolution of radio-AGN

Best et al 2014, MNRAS in press, arXiv

To determine the evolving importance of radio-AGN feedback
we need to measure cosmic evolution of jet-mode AGN

® (Combined 8 radio source samples at 0.5<z<1.0, to build a
>200 source sample with good radio luminosity coverage
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Cosmic evolution of radio-AGN

Best et al 2014, MNRAS in press, arXiv

To determine the evolving importance of radio-AGN feedback
we need to measure cosmic evolution of jet-mode AGN

® (Combined 8 radio source samples at 0.5<z<1.0, to build a
>200 source sample with good radio luminosity coverage

® Spectroscopically classified using [OII] 3727 and [OIII] 5007

emission lines
- used SDSS data to calibrate
classification criteria
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Cosmic evolution of radio-AGN

This has allowed us to derive the luminosity functions of the two
separate populations, to compare with the local RLFs
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Radiative-mode radio-AGN evolve by factor ~7 at all luminosities
- consistent with picture that these are fuelled by cold gas

Jet-mode radio-AGN show no evolution at low luminosity, but
evolve strongly at high luminosity
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Evolution of jet-mode AGN
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Can also split jet-mode AGN 1nto
two redshift ranges.

e At high luminosity, space
density increases continually
with redshift

e At low luminosity, space density
of jet-mode AGN increases out
to z=0.5, but then falls



Modelling the evolution

Simple model of jet-mode AGN:
e quiescent massive galaxies

e fuelled by accretion of gas cooling
from hot halos

We can therefore predict how the jet-
mode RLF should evolve:

e Pure space density evolution, in
line with space density evolution
of potential massive host galaxies

“Model 1a”: doesn’t provide a good
match to the data at high or low
luminosity
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Jet-mode, z=0
Model 1a, z=0.6,z=0.85
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Luminosity-density evolution?

Universe 1s denser with higher gas
fraction at high redshift

e radio sources more confined, and
synchrotron emission boosted?

¢ luminosity + density evolution?

“Model 2a”’: good match at high
luminosity, but still struggles to
match low luminosity decline

e Note, if luminosity evolution does
occur, 1t implies that the radio
luminosity to mechanical jet power
conversion 1s redshift dependent...
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Model 2: luminosity & density evolution

— — Model 2b, z=1.5
Jet-mode, z=0
Model 2a, z=0.6,z=0.85
= = Model 2b, z=0.6,2=0.85
Model 2c, z=0.6,z=0.85
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A cold-gas fuelled component?

Alternatively, “jet-mode AGN”
include could a contribution of cold-
gas fuelled sources:

Model 3: density evolution + radiative-mode fraction

e Hot halo gas fuelling always at low
rates, leading to jet-mode AGN

e Cold gas fuelling usually at high
rates leading to radiative-mode
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e But cold gas could fuel at lower
rates, producing jet-mode activity

10| = = Model 3b, z=

-
e

“Model 3a”: allows radiative-mode N
fraction scaled in L and rho. Also '
good match at high luminosity

e Direct test of accretion theory



A delay before jet-mode activity?

Is there a delay between galaxies
becoming quiescent, and jet-mode
radio-AGN activity starting up?

H Baldry et al (2012)
” @ Moustakas et al (2013)
A libert et al (2013)
¥ Muzzin et al (2013)
4 Dominguez Sanchez et al (2013)

e might help explain why radio-
AGN hosts are always amongst
largest quiescent galaxies at their
epoch

“Model 2b”’: acceptable match to the
data at all lums, with 1.5Gyr delay
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e [f this delay is real, it would imply
that jet-mode AGN activity 1s not
responsible for the quenching T
process, only for “maintenance” of Model 26 =06,2-0.95
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Which model 1s correct?

Radio-mode AGN at z=1.3

- — - Cold gas contribution
Lum-dens evolution; no delay
Lum-dens evolution; 1.5 Gyr delay
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Three different models, each with
important implications.

None can be statistically excluded
using current data at 0.5 <z < 1.0.

Best way to distinguish comes
from higher redshifts:

e predictions for space density are
very different by z=1.3



Summary

Not all AGN follow the “standard” accretion disk picture
- population of low accretion rate, radiatively inefficient, radio
sources, dominates the low-luminosity end of RLF

These sources are 1n massive galaxies, and appear to be

fuelled directly or indirectly from the hot gas halo

- radio source activity 1s highly-recurrent

- time-averaged energetic output balances cooling rates of hot
halo gas, leading to a radio-AGN feedback cycle.

Jet-mode AGN show cosmic evolution broadly in line with
expectation from evolution of massive galaxy hosts but:

- also need luminosity evolution (Lrad-Lmech must depend on z)

- or need a contribution of cold-gas fuelled sources

- + suggestion of delay between quenching & radio-AGN activity

Higher redshift data will distinguish these possibilities



