stellar mass growth of brightest cluster galaxies

Yen-Ting Lin Institute of Astronomy & Astrophysics Academia Sinica

Anthony Gonzalez, Mark Brodwin, Adam Stanford, Peter Eisenhardt, Alexey Vikhlinin, Paul Bode, Jerry Ostriker, Takahiro Inagaki, Hung-Jin Huang, Bau-Ching Hsieh, Naoshi Sugiyama

BCGs as central galaxies

- most galaxies are centrals
- BCGs are central galaxies in very massive halos*
- top of the "food chain" in the world of galaxies
- may well have different formation path compared to other (massive) galaxies

* ignoring complications where BCGs ≠ central

BCGs as special centrals

central location controls how they feed

BCGs as special centrals

they should be blue but most of them are not!

B. McNamara, C. Conselice

plan

motivation

- BCGs as central galaxies with special formation mechanisms
- as a class, may be clear manifestation of "progenitordescendant relation in growing environments" that Taddy discussed yesterday
- stellar mass assembly history of BCGs I: observationally constructing merger trees
- stellar mass assembly history of BCGs II: most massive clusters

BCGs: stellar mass assembly history from z-1.5 to z-0

theory predicts substantial late-time growth

Gao+04, De Lucia & Blaizot 07

theory predicts substantial late-time growth

Gao+04, De Lucia & Blaizot 07

a new approach to trace the BCG evolution

- guided by dark matter halo merger history, incorporating scatter between luminosity and mass contents of clusters
- allows us to follow the growth of BCG stellar mass in clusters that form an evolutionary sequence
- applied to a complete sample of clusters selected by stellar mass content (z=0.2-1.5) in Bootes field

De Lucia & Blaizot 07

descendants vs progenitors: BCGs

XMM2235.3-2557 Z=1.39 M₂₀₀~6·10¹⁴M_{sun}

RDCS1252.9⁻2927 Z=1.24 M₂₀₀-3[.]10¹⁴M_{sun}

A2029 z=0.078 M₂₀₀~10¹⁵M_{sun}

image credit: SDSS, NASA/ESA

cluster evolution seen by Spitzer

- IRAC shallow cluster survey (ISCS; PI: Eisenhardt)
- 9 deg² Bootes field, with rich multiwavelength data and good photo-z
- detecting clusters with wavelet from density peaks
- 335 4.5micron (-restframe K-band/stellar mass) selected groups/clusters out to z-2
- galaxy number (N_{gal}) and luminosity (L_{tot}) in each cluster determined via statistical background correction
- lack of cluster mass info (although with good stellar mass estimates)

the approach

- given z ⇒ select a complete sample whose median mass traces the mass growth history
- infer cluster mass via luminosity ranking
 ⇒ given top N most luminous clusters,
 we know the median mass
- extract 16 Bootes-like patches from a lightcone simulation
- populate halos with assumed L-M relation
 - slope, scatter
 - galaxy spatial distribution
 - field-to-field variation

descendants vs progenitors: halos

- we are interested in descendant halos within a narrow mass range
- progenitors have a wide mass range
- not all of the progenitors with such masses will end up as descendants of the mass we care
- for each possible progenitor, given its mass, we find the corresponding observed cluster using the top N– mass lookup table, but weigh the observed M_{bcg} by the relative fraction of all progenitors with the same mass
- average M_{bcg} over all possible progenitors

BCG mass growth up to z-1.5

- identified progenitors of clusters whose present-day M-3x10¹⁴ M_{sun}
- blue: median BCG mass within 32kpc aperture
- red: prediction from Guo+10 SAM (no intracluster light, ICL)
- fairly good agreement down to z-0.5; results seem to diverge at lower-z
- results in z=0.2-1 in agreement with Lidman+12 (why?)
- ICL may help alleviate the tension?!

late time evolution of BCGs in most massive clusters

top N selection of halos

- Ansatz: given comoving volume, the most massive N halos will remain among the most massive N over short cosmic time interval
- tests with large N-body simulations suggest above holds to -70-80% (including scatter in mass-observable relation)
- similar in spirit to the fixed cumulative number density selection for field galaxies Inagaki, Lin et al. 2014, submitted

does this work for BCGs?

- a simple simulation
 - at z=0.4, assign BCGs to halos with L_{bcg} = A M^{0.2} with 30% scatter
 - similarly, at z=0.2, $L_{bcg} = B M^{0.2}$
 - set B/A=2
- inferring B/A from descendants of top N z=0.4 halos gives unbiased results
- top N selection at both redshifts seems to give slightly biased B/A (by -10%)

application to Planck clusters

- consider two redshift bins: 0.13-0.26, 0.37-0.41
- same comoving volume
- use SDSS data to confirm the presence of cluster red sequence & selection of BCGs
- select top 30 cluster using M_{Yz} ; limiting mass -3x10¹⁴ M_{sun}
- use SDSS photometry to estimate stellar mass of BCGs

little growth at late times

- BCGs in top 30 clusters at these epochs have very similar masses
- mass growth, if any, likely -few %
- in Guo+13 (Millennium run with WMAP7), BCGs in top 30 most massive clusters within same comoving volume grow by 30% from z=0.4 to 0.2

 z<0.5 seems to be a critical phase to test theoretical predictions with observations!

Inagaki, Lin et al. 2014, submitted

summary & prospects

- developed a way to connect BCGs in clusters at different redshifts even when the cluster mass is not known well
- main trunk of BCG merger tree thus determined agrees well with SAM at z=0.5 to 1.5
- at z<0.5, there seems to be little stellar mass growth of real BCGs
- similar results also found for massive clusters detected by *Planck* (explains why Lin+13 agrees with Lidman+12)
- will apply these methods to on-going Subaru HyperSuprimeCam (HSC) survey
- collaboration between Japan, Taiwan, and Princeton
- 300 nights over 6 years granted
- 1.8 deg² FOV, grizy + narrow band
- wide: 1400 deg², r-26

