Environmental dependence of the structural evolution of early-type galaxies

Carlo Nipoti

Bologna University



Evolving galaxies in evolving environments, Bologna, September 2014

### Observed size evolution of ETGs

Cimatti, Nipoti & Cassata (2012)



| Sample          | N      | Redshift          |
|-----------------|--------|-------------------|
| SDSS            | 59 500 | 0 < z < 0.4       |
| COSMOS/2COSMOS  | 950    | 0 < z < 1         |
| GOODS-N+S       | 469    | $0 < z^{*} < 2$   |
| Literature      | 465    | 0.2 < z < 2.7     |
| GMASS           | 45     | $1.4 < z^* < 3$   |
| COSMOS          | 12     | $1.4 < z^* < 1.8$ |
| XMMU J2235-2557 | 11     | z = 1.39          |
| K20-0055        | 9      | 0.7 < z < 1.2     |
| POWIR           | 6      | $1.2 < z^* < 1.8$ |
| K20             | 4      | 1.6 < z < 1.9     |
| 1255-0          | 1      | z = 2.186         |
| FW-4871         | 1      | z = 1.902         |

see also Daddi+05, van Dokkum+08, Newman+12, Saracco+14, Morishita+14, van der Wel+14

## Observed velocity-dispersion evolution of ETGs



see also Belli et al. (2014)

#### $R_{ m e}$ and $\sigma$ vs. mass: dry-merger simulations





see also Hausman & Ostriker (1978); Hernquist+(1993); Ciotti & van Albada (2001); Naab+(2009)

#### Size evolution of ETGs: LCDM vs. observations

(see also poster by Lorenzo Posti)



ightarrow Observed pprox predicted at  $z\lesssim 2$ 

ightarrow Observed evolution stronger than predicted by LCDM at  $z\gtrsim 2$ 

#### $\sigma$ evolution of ETGs: LCDM vs. observations

(see also poster by Lorenzo Posti)



ightarrow LCDM predictions consistent with current observations.

### Evolution of ETGs in groups and clusters



- ightarrow COSMOS groups at z pprox 0.6 (George+11)
- ightarrow EDisCS clusters at  $z \approx 0.6$  (White+05)
- ightarrow WINGS clusters at  $z \approx 0$  (Fasano+06)

ightarrow Galaxies evolve:  $M_*(z)$ ,  $R_{
m e}(z)$ ,  $\sigma(z)$ ightarrow Environment evolves:  $M_{
m halo}(z)$  (group ightarrow cluster)

# $R_{ m e}$ - $\sigma$ - $M_{*}$ : centrals vs. satellites at zpprox 0





 $\rightarrow$  Observed clusters at  $z \approx 0$  (WINGS)  $\rightarrow$  Large offset between centrals and satellites

see also Lauer+07, Bernardi 09, Hyde & Bernardi 09, Valentinuzzi+10

## $R_{ m e}$ - $\sigma$ - $M_*$ : centrals vs. satellites at $z \approx 0.6$



Vulcani et al. in prep.

- ightarrow Observed groups at zpprox 0.6 (COSMOS)
- ightarrow No (or small) offset between centrals and satellites

see also Lauer+07, Bernardi 09, Hyde & Bernardi 09, Valentinuzzi+10

# Modeling evolution of group ETGs: $R_{\rm e}$ - $M_{*}$



- ightarrow Initial conditions: COSMOS data (Vulcani et al. in prep)
- ightarrow Evolution of centrals: LCDM+dry mergers (Nipoti+12)
- ightarrow No evolution of satellites
- $\rightarrow$  Predicted  $z \approx 0$  offset smaller than observed in WINGS

# Modeling evolution of group ETGs: $\sigma-M_*$



- ightarrow Initial conditions: COSMOS data (Vulcani et al. in prep)
- $\rightarrow$  Evolution of centrals: LCDM+dry mergers (Nipoti+12)
- ightarrow No evolution of satellites
- $\rightarrow$  Predicted  $z \approx 0$  offset smaller than observed in WINGS

# Modeling evolution of group ETGs: $R_{ m e}$ - $\sigma$



- ightarrow Initial conditions: COSMOS data (Vulcani et al. in prep)
- $\rightarrow$  Evolution of centrals: LCDM+dry mergers (Nipoti+12)
- ightarrow No evolution of satellites
- $\rightarrow$  Predicted  $z \approx 0$  offset smaller than observed in WINGS

#### Evolution of halos: hosts vs. subhalos

(see poster by Lorenzo Posti)

Cosmological simulation of Posti et al. (2014)



- ightarrow No big difference between hosts and subhalos
- ightarrow Trend: hosts evolve more than subhalos
- ightarrow Dependence on halo mass?

```
Lens ETGs: total density slope m{\gamma'} (
ho_{tot} \propto r^{-\gamma'})
```



 $ightarrow \gamma'$  strongly influenced by environment

# Evolution of $\gamma'$ : dry mergers vs. observations



- ightarrow Model: Nipoti et al. (2012) +  $\gamma'$  (N-body)
- ightarrow Observations: SLACS+SL2S lenses (Sonnenfeld et al. 2013)
- ightarrow Evolution of  $\gamma'$  not explained by purely dry mergers

# Evolution of $\gamma'$ : wet mergers vs. observations



- $\rightarrow$  Toy-model dissipation
- ightarrow Small amount of dissipation helps reproduce  $\gamma'(z)$

## Conclusions

- ▶ LCDM-merger models consistent with average  $R_{
  m e}(z)$  and  $\sigma(z)$  of ETGs at  $z \lesssim 2$
- $\blacktriangleright$  Observed  $R_{
  m e}(z)$  stronger than predicted at  $z\gtrsim 2$
- ▶ At  $z \lesssim 1$  further challenges for LCDM-merger models:
  - $\rightarrow$  Central ETGs in groups evolve much faster than satellites
  - $\rightarrow$  Total density slope  $\gamma'$  strongly influenced by environment
  - $\rightarrow$  Evolution of  $\gamma'$  not explained by purely dry mergers