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Highlights of 2014

“*Disclaimer: my selection has high purity
but low completeness
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Large Scale Structure Map from the Sloan Digital Sky Survey |




Metallicity

Many fundamental physical parameters of
galaxies are tightly correlated

Stellar Mass

Scatter
less than
+/- 0.1 dex



The “Bathtub™ Model
(equilibrium, gas regulator)

Fresh Accretion
Recycled gas

Star Formation
Galactic Winds

SFR « (Gas Mass; Outflows « SFR => equilibrium

Finlator et al. 2008; Bouche et al. 2010; ... Peng et al. 2014; Dekel et al. 2014



The bathtulb model provide some intuition
iInto which physical parameters are important

1 f gas

equilibrium
timescale

‘L’e - —-—--
T SSFR-(1 — R+A) 1 — fou

SFR Mout gas
M* SFR fraction

Fraction of stellar
mass that is returned
promptly to the ISM



Gas accretion is difficult to directly observe - focus is

on individual detections at present
(see A&A review by Sanchez Almeida+ 2014)

Lener+ 2013 showed that Lyman Limit Systems have a bi-modal
metallicity distribution - metal poor LLS may trace accretion

HI selected, LLS (16.1<log N,,<18.6)
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The gas around z~2.5 star forming
galaxies is a complex mix of metal
rich and poor components

Partial LLS

D comp.+

100
R, (proper kpc)

Crighton+ 2014

Low angular momentum
metal-poor gas

100 <00

Velocity around z=2.3285 [km s-']

Bouche+ 2013



Intergalactic gas in Ly & emission around two
quasars (Cantalupo+ 2014)
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CO Measurements of _
PHIBSS 7=2-3 Tacconi+14

normal star forming e PHIBSS 2=1-15
galaXieS indicate redShiﬂ: 22)88125)3181166 z=1.53 resolved

evolution of the Kennicutt-
Schmidt relation = SF
efficiency higher at z>1

PHIBSS - IRAM PdB high-
z CO 3-2 survey of 56
normal star forming
galaxies:

log(M*) >10.4
log(SFR) = 1.5.
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A very similar trend Is seen when dust mass Is used
to calculate the total gas mass (Santini+ 2014)

Herschel PACS+SPIRE
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The Star Formation Main Sequence:z=0-6

Speagle+2014
compiled MS
observations
from 25 studies
and converted
them to the
same absolute
calibrations
(IMF, L-SFR,
cosmology, etc)
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Linear SFR-M™* trend with intrinsic scatter of 0.2 dex



Probing the Main-Sequence at Lower Masses

Whitaker+2014 analyze a
mass-complete sample
of ~39,000 star-forming
galaxies with deep
CANDELS 0.3 -8 um

- photometry, Spitzer/MIPS
0.5<2210 24um, grism redshifts
and Ha from 3D-HST
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Steeper slope (SFR-M*) at lower masses, evolution in slope
at massive end (slow quenching?)



The Main Sequence is influenced by Environment at
Low Redshift

Haines+2013

LoCuSS
MIPS 24um + R
optical spectra s
of clusters at ?E’
z=0.15-0.3 "’c.,
SFR/M* In massive g _
cluster galaxies is Field galaxies

suppressed by | Cluster (<1.5r5,)
~30% relative to p 0-15<2<0.25
the field




Cluster-related quenching does not seem to be at
work above z~1.4 (Brodwin+ 2013)
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Quenching: a stronger function of central stellar
mass density (bulge) rather than stellar mass

Omand+ 2014

Quiescent Fraction
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Do Centrals Suffer Environmental Quenching?

Cen:tN. =20
abs

Matching:
m‘

# Gal: 21827

® centrals
® satellites

Knobel et al. 2014

(b)
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abs
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Matching:
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Cen: Nabs
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m, o, R
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Knobel+2014
showed that
when the study
was limited to
centrals in groups
with more than 3
massive galaxies
the quenched
fractions of
satellites and
centrals were
similar



Mass density in central kpc

Central quenching: a function of central density
and halo mass

Woo+ 2014

Halo Mass Halo Mass

Fast quenching: central density (mergers, violent disk instability)
Slow quenching: halo mass (viral shock heating)



Outflows are ubiquitous in actively star forming galaxies.
So why don’t we know more about them?

Velocities of the warm/cool phase are easy, masses are hard!

COS spectrum of local LIRG NGC 7552 (Wood, in prep.)
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UV interstellar absorption lines are great for measuring wind velocities,
but many strong lines are saturated - difficult to measure column density



Broad Ha and [S II] emission lines have been used to estimate
mass outflow rates in local (U)LIRGs and z~2 galaxies

Newman+ 2012 Arribas+ 2014
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But Ha is only sensitive to the highest density gas - traces
inner shocked wind not large scale outflow

NGC 7552 (Wood, in prep)

broad Ha
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Powerful molecular outflows
have been observed in many
star forming galaxies and AGN
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Molecular Outflows are observed in starbursts and
AGN, but mass outflow rates are higher in AGN.

Cicone+2014

AGN Outflows greatly reduce gas repletion times (~10 Myr) = Quenching



Molecular Gas observations of BCGs:
outflows and inflows

sy -

Figure 6. Left: Hubble Space Telescope (HST) WFPC2 F606W optical image
of the BCG in A1664. Right: zoom-in of the HST image with ALMA CO(3-2)
contours representing the BCG’s systemic component (—285 to 285km s~ /;
yellow) and HVS (=705 to —405km s~!; cyan). The ALMA beam size for

CO(3-2) 1s shown to the lower left.

Russell+ 2014, see also McDonald+ 2014,
Labiano+ 2014, Werner+ 2014, McNamara+ 2014



McGee 2014
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A key constraint on outflows comes from the
ratio of stellar to halo mass

Star
formation

Feedback .
Behroozi+ 2013 AGN

Feedback ?

— Behroozi et al. (2010)

= === Reddick et al. 2012
Moster et al. 2010 (AM)

Moster et al. 2013 (AM)
Guo et al. 2009 (AM)

= == = Wang & Jing 2009 (AM+CC)
Zheng et al. 2007 (HOD)
Yang et al. 2012 (CLF)
Yang et al. 2009a (CL)

« === Hansen et al. 2009 (CL)
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At most only 15% of the available baryon have turned into stars
by the present



Improved photometry of BCG results in stellar
masses that are larger by tactors of 2-6

observations:
X X-ray (this work)
X X-ray (G13)
Y% X-ray (H11,12)

abundance matching:

with scatter (this work)
------------ w/o scatter (this work)
m— == Moster+ 13

Behroozi+ 13

10-3
1010 10! 10! 10!3 1014 1Q!5

Mpgo (M)

Bernardi+2013, Karvitsov+2014



If, in addition, the IMF becomes more bottom heavy

with increasing M* ...

The efficiency
of SF in massive
halos appears
only moderately
suppressed
(2-3x) compared
to L* galaxies

Kravtsov+ 2014
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A galaxy’'s gas phase metallicity is sensitive to many
important parameters of its evolution

Equilibrium solution from Lilly+ 2013

Y

Zeq = /o + PR Eap—
l+A(1l — R)™  +e& 'mg, - SFR
metallicity thﬂow f Statr.
of accreted SFR e?;i?igrlg;

gas



The Fundamental metallicity relation (Mannucci+ 2010)

|
10 10.5 11
log(M.)-0.32 log(SFR)

Metallicity correlates with stellar mass and SFR.
Galaxies along on this surface surface



M-Z-SFR: Not So Fundamental Any More?

Troncoso+2014
AMAZE + LSO: star forming galaxies at z~3.4

9.0 9.5 10.0 10.5 85 90 95 10.0 10.5

Hoge= 10g(M*[Me])—0.3210g(SFR[Mo/yr])

See also Zahid+ 2014, Steidel+ 2014




How do we make progress?
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Metallicity gradients trace a galaxy’s history of star
formation, inflow, outflow and interaction with the large
scale environment

5 10 15
r [kpc]

Figure 6. The radial gas-phase metallicity gradient for disc galaxies with

stellar mass 10'Y < M, /Ma < 10'%° from the model results at z = 0,

The three different colour curves represent the model results with f, por =
0.0, 0.8, 1.0, respectively

Fu, Kauffmann et al. 2013



pping Nearby Galaxies at APO

Pl: Kevin Bundy (IPMU, Japan)
Project Scientist: Renbin Yan (U. Kentucky, USA)

One of 3 new SDSS-IV surveys

- half of dark time for 6 years
- began July 2014

IFU spectra of 10,000 galaxies
- z~0.03

- coverage to 1.5and 2.5 Re

- A=3600-10300 A at R~2000

- Survey overview paper to be

submitted this month (Bundy et al.)



The early MaNGA data looks great!
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2014 Highlights:

*» Metal-poor gas accretion co-exists with outflows and recycled gas

* The SFR “main sequence” is not flat. Its shape is modified by redshift and
environment

» Star formation efficiency (gas consumption time) changes with redshift
* Quenching is more strongly associated with galaxy compactness than stellar mass

* Molecular outflows are prevalent in star forming galaxies and AGN - so far only
AGN appear to eject enough molecular gas to bring about quenching

*» Metallicity is a sensitive barometer of many important ingredients in galaxy
evolution - high z galaxies fall off the “fundamental” Z-M*-SFR relation



The BOSS spectrographs provide wide
wavelength coverage at R~2000
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MaNGA IFUs

29 deployable fiber-IFUs (17 science, 12 calibration) housed in
metal ferrules that can be plugged into SDSS plates (7 sq deg)

Instrument team: Niv Drory, Matt Bershady, Nick
MacDonald, Arthur Eigenbrot (herel), et al.



