Relationship between Morphology and Structure of Brightest Cluster Galaxies and their Environment

Dongyao Zhao

Alfonso Aragón-Salamanca Christopher Conselice

School of Physics & Astronomy University of Nottingham

UNITED KINGDOM · CHINA · MALAYSIA

Motivation

- Brightest cluster galaixes (BCGs): the most massive and luminous galaxies in the universe
- Most BCGs are either giant ellipticals or cD galaixes
 - Do structural properties link with morphologies of BCGs?
 - Automatic selection of cD galaxies
 - Do structural properties of BCGs link with intrinsic properties or environments?
 - Do cDs have a distinct evolutionary history?

Visual Classification

Sloan Digital Sky Survey (SDSS) DR7 r-band

- 625 BCGs at $0.02 \le z \le 0.1$ from von der Linden et al. (2007)
- Three main types: cD (414), elliptical (155), disk (S0 22; spiral 24)

Measurements of Structure

Evaluate the Fittings

Quantify the residual images
residual flux fraction (RFF)

Fitting with Single Sérsic Profile

- cD and elliptical BCGs have similar n
- cD galaxies have larger effective radii
- It is harder to fit cD galaxies very well just by single Sérsic profile (larger RFF and χ²)
- Clear link between morphology and structure

Automatic Selection of cD Galaxies

- Best border
 - Method from Hoyos et al. (2011)
 - Selected cDs have high completeness (75%) and low contamination (20%)
 - This method can be applied to future BCG samples

Stellar Mass

- o M_∗ does not correlate with Sérsic index n
- M_{*} correlates with effective radius R_e

Stellar masses are from 'The MPA-JHU DR7 release of spectrum measurements'

Environmental Density

Density is from Tempel et al. (2012) for scale of 1 h⁻¹Mpc

Dark Matter Halo Virial Mass

Cluster velocity dispersion is from von der Linden et al (2007)

cDs Properties Relate with M_{*} and environment

- cDs are larger in factor of 2 and 60% more massive than ellipticals in same density
- cDs may grow through minor mergers

Conclusions

- Visual morphology strongly correlates with the structural parameters of BCGs
 - cDs are larger in size compared to elliptical BCGs
 - cDs are harder to fit with single Sérsic profile than elliptical BCGs--larger residuals
- >> Automatic selection of cDs
- For BCGs
 - Size correlates with stellar mass
 - Stellar mass correlates with environmental density
 - o cDs tend to live in denser environments than elliptical BCGs
 - At a fixed density, cDs are larger and more massive than elliptical BCGs implying that cDs may envolve from elliptical BCGs by forming the outer part through minor mergers