HI properties of galaxies in Ursa Major and Perseus-Pisces
the effect of the environment

Eva Busekool
University of Groningen
Kapteyn Astronomical Institute
Scientific motivation

What is the influence of the environment on the HI content of galaxies?
Outline

• Ursa Major region
 – HI survey
 – Blind imaging mosaic
 – HI Mass Function

• Perseus-Pisces filament
 – HI survey
 – Blind imaging mosaic

• Future work

• Conclusion
HI imaging surveys of Ursa Major

- **Ursa Major region**
 - 17.4 Mpc
 - Dominated by late-types
 - No X-ray radiation

- **Targeted survey WSRT**
 - Complete sample $M_B < -16.8$
 - 56 galaxies

- **Blind survey VLA-D**
 - 54 pointings
 - 16% of volume
 - $\Theta = 45''$, $\Delta v = 10.3$ km/s, $\sigma \sim 0.4$ mJy/beam)
VLA imaging mosaic of Ursa Major

- 41 galaxies detected \((M_{\text{HI, min}} \sim 10^7 M_{\odot})\)
- Science goals:
 - Study HI morphology and kinematics
 - Slope of HIMF
HI mass function

- Galaxy formation and evolution
 - Slope quite different from theoretical prediction

- Environmental dependence

- Statistics:
 - HIPASS: 4,315
 - ALFALFA: 10,119
 - CVn: 70
 - Galaxy groups: 31

- Completion correction: \(\frac{V}{V_{\text{max}}} \) method
HIMF of the Ursa Major region

- HIMF of the Ursa Major region:
 - The slope is declining
 - Slope is quite different than HIPASS and ALFALFA

- Environmental dependence
Blind survey of the Perseus-Pisces filament

- Blind survey of part of the PP filament
- VLA-C ($\Theta \sim 15''$, $\Delta v \sim 20$ km/s, $\sigma \sim 0.8$ mJy/beam)
- 44 pointings
- $M_{\text{HI}, \text{min}} = 5 \times 10^8 \, M_{\text{sun}}$
- Expected ~ 150 galaxies
- 2x4 deg
Preliminary results from mosaic

Early-types with large HI disks
Future work

• Source finding and characterization
• Definitions of environments
• Compare the HI properties of galaxies in Ursa Major and Perseus-Pisces
• Compare to other environments like CVn, Virgo, and Coma
Conclusion
Thank you!

References:
2) Zwaan et al. (2005), MNRAS, 359, L30
3) Martin et al. (2010), MNRAS, 415, 1883
4) D. J. Pisano et al. (2011), ApJS, 197, 28P
6) Trentham et al. (2001), MNRAS, 325, 385
7) http://fas.org/irp/imint/docs/rst/Sect20/A4.html
8) http://www.deepfield.at/gallery/m81_group_I_22.html
9) http://www.astro.yale.edu/viva/