Gas accretion and star formation: drivers of galaxy evolution

Amélie Saintonge University College London Royal Society Research Fellow

The old picture: merger-driven galaxy evolution

from mid-80s to 5-10 years ago: merging of galaxies seen as the main driver of galaxy evolution

The global picture: accretion-driven galaxy evolution

Forster Schreiber et al. (2006)

near-IR IFU work: $z\sim2$ galaxies with high SFRs are in large part well ordered discs, and not major mergers.

The global picture: accretion-driven galaxy evolution

Vol 463 11 February 2010 doi:10.1038/nature08773

LETTERS

nature

High molecular gas fractions in normal massive star-forming galaxies in the young Universe

L. J. Tacconi¹, R. Genzel^{1,2}, R. Neri³, P. Cox³, M. C. Cooper⁴, K. Shapiro⁵, A. Bolatto⁶, N. Bouché¹, F. Bournaud⁷, A. Burkert⁸, F. Combes⁹, J. Comerford⁵, M. Davis⁵, N. M. Förster Schreiber¹, S. Garcia-Burillo¹⁰, J. Gracia-Carpio¹, D. Lutz¹, T. Naab⁸, A. Omont¹¹, A. Shapley¹², A. Sternberg¹³ & B. Weiner⁴

mm work: $z\sim2$ galaxies with high SFRs have significantly more gas than counterparts in the local Universe!

accretion-driven galaxy evolution

the "equilibrium" (or regulator) model

Star formation is regulated by the mass of gas in a reservoir, which itself is affected by the inflow rate, the star formation efficiency, and the mass loading factor of outflows.

Lilly et al. (2013), see also, e.g. Genel et al. (2008), Bouché et al. (2010), Davé et al. (2011,2012), Krumholz & Dekel (2012)

the "equilibrium" (or regulator) model

Star formation is regulated by the mass of gas in a reservoir, which itself is affected by the inflow rate, the star formation efficiency, and the mass loading factor of outflows.

Lilly et al. (2013), see also, e.g. Genel et al. (2008), Bouché et al. (2010), Davé et al. (2011,2012), Krumholz & Dekel (2012)

(1) Star formation efficiency, the gas reservoir and its redshift evolution

IRAM surveys for molecular gas in normal galaxies

direct molecular gas measurements for large, representative samples of *normal star forming galaxies* from both IRAM facilities

COLD GASS

PIs G. Kauffmann (MPA), C. Kramer (IRAM) 600h IRAM 30-m Large Programme +1000h Arecibo Programme for HI

365 SDSS-selected galaxies with 0.025 < z < 0.050, M*>10¹⁰

see Saintonge et al. 2011a,b, Kauffmann et al. 2012, Saintonge et al. 2012.

PHIBSS PIs L. Tacconi, R. Genzel (MPE), F. Combes (Paris) 500h IRAM PdBI Large Programmes

> 64 star forming galaxies with 1.0<z<2.5, 3x10¹⁰<M*<3x10¹¹ + high-resolution follow-up

> see Tacconi et al. 2010,2013, Genzel et al. 2010,2012,2013, Freundlich et al. 2013.

Lensed galaxies

PI D. Lutz (MPE), A. Baker (Rutgers) IRAM PdBI

17 lensed star forming galaxies with 1.5<z<3.1, M*>10⁹ includes full Herschel PACS+SPIRE photometry see Saintonge et al. 2013

$$sSFR = \frac{SFR}{M_*} = \frac{M_{HI}}{M_*} \frac{M_{H2}}{M_{HI}} \frac{SFR}{M_{H2}}$$
$$= f_{HI} R_{mol} SFE$$

HI contents varies mostly *across* the MS, but also *along* (high SFR+low M* = more HI)

H2 contents varies almost exclusively *across* the MS (high SFR = more H₂)

Star formation efficiency variations in the SFR-M* plane

Saintonge et al. (2012)

BOTH H₂ contents and star formation efficiency vary *across* the MS

Gas and star formation efficiency explain the SFR-M* plane

The position of a galaxy in the SFR-M* plane depends on:
(1) how much fuel it has
(2) how much of it is available for star formation
(3) the efficiency of the conversion of this gas into stars

Gas on the main sequence and star formation quenching

as galaxies evolve along the main sequence, they steadily consume their gas supplies

Gas on the main sequence and star formation quenching

as galaxies evolve along the main sequence, they steadily consume their gas supplies and grow more prominent bulges

Gas in the SFR-M* plan and what it teaches us

Gas fractions increase up to z=2

Saintonge et al. (2013), Tacconi et al. (2013)

(2) Outflows and the return of gas and metals to the CGM/IGM

Direct observations of massive molecular outflows

Direct observations of massive molecular outflows

Although starbursts are effective in driving massive molecular outflows, the presence of an AGN may strongly enhance such outflows.

Direct observations of massive molecular outflows

Although starbursts are effective in driving massive molecular outflows, the presence of an AGN may strongly enhance such outflows.

(3) Inflows and the feeding of the galaxy system

Different modes of gas accretion

z=5.5, M*=1.6x10¹⁰ M $_{\odot}$

z=3.0, M*=7.0x10¹⁰ M $_{\odot}$

Keres et al. (2005)

see also: Rees & Ostriker (1977), Binney (1977), Katz et al. (1994), Kay et al. (2000), Birnboim & Dekel (2003), Dekel & Birnboim (2006), Dekel et al. (2009)

Different modes of gas accretion

Even at z=0 there is a need for the gas reservoirs to be replenished $(t_{dep} << t_{Hubble})$

Observational evidence for cold flows?

Observations of the circumgalactic medium (CGM) with HST/COS

Other suggestions that Lyman-limit systems are actually cold flows...

Unlikely that the gas detected is predominantly new material, either from 'cold' or 'hot' flows. Observations of inward-moving gas, but may not match the specifications of cold flows. Can also use kinematic clues (e.g. Bouché et al. 2013)

Conclusion and outlook

Significant evidence for star formation and stellar mass growth of galaxies to be driven by the properties of the gas reservoir.

Conclusion and outlook

Significant evidence for star formation and stellar mass growth of galaxies to be driven by the properties of the gas reservoir.

Conclusion and outlook

Significant evidence for star formation and stellar mass growth of galaxies to be driven by the properties of the gas reservoir.

